История открытия элементарных частиц. История открытия элементарных частиц: атомы, адроны, кварки, струны История открытия элементарных частиц

К физике атомного ядра тесно прилегает физика элементарных частиц. Эта область современной науки базируется на квантовых представлениях и в своем развитии всё дальше проникает в глубину материи, открывая загадочный мир ее первооснов. В физике элементарных частиц чрезвычайно велика роль теории. В силу невозможности прямого наблюдения таких материальных объектов их образы ассоциируются с математическими уравнениями, с наложенными на них запрещающими и разрешающими правилами.

По определению элементарные частицы – это первичные, неразложимые образования, из которых, по предположению, состоит вся материя. На самом же деле этот термин употребляется в более широком смысле – для обозначения обширной группы микрочастиц материи, структурно не объединенных в ядра и атомы. Большинство объектов исследования физики элементарных частиц не отвечают строгому определению элементарности, поскольку представляют собой составные системы. Поэтому частицы, удовлетворяющие этому требованию, принято называть истинно элементарными .

Первой элементарной частицей, открытой в процессе изучения микромира еще в конце XIX в., был электрон . Следующим был открыт протон (1919), затем пришла очередьнейтрона , открытого в 1932 г. Существованиепозитрона теоретически было предсказано П. Дираком в 1931 г., и в 1932 г. этот положительно заряженный «двойник» электрона был обнаружен в космических лучахКарлом Андерсоном . Предположение о существовании в природенейтрино было выдвинуто В. Паули в 1930 г., а экспериментально оно было обнаружено только в 1953 г. В составе космических лучей в 1936 г. были найденымю-мезоны (мюоны ) – частицы обоих знаков электрического заряда с массой около 200 масс электрона. Во всем остальном свойства мюонов очень близки к свойствам электрона и позитрона. Также в космических лучах в 1947 г. были открыты положительный и отрицательныйпи-мезоны , существование которых было предсказано японским физикомХидэки Юкавой в 1935 г. В дальнейшем выяснилось, что существует также нейтральный пи-мезон.

В начале 50-х гг. была открыта большая группа частиц с весьма необычными свойствами, что побудило назвать их «странными» . Первые частицы этой группы были обнаружены в космических лучах, этоК-мезоны обоих знаков иL -гиперон (лямбда-гиперон). Отметим, что мезоны получили свое название от греч. «средний, промежуточный» в силу того, что массы первых открытых частиц этого типа (пи-мезоны, мю-мезоны) имеют массу, промежуточную между массой нуклона и электрона. Гипероны же ведут свое название от греч. «сверх, выше», поскольку их массы превышают массу нуклона. Последующие открытия странных частиц делались уже на ускорителях заряженных частиц, которые стали основным инструментом изучения элементарных частиц.

Так были открыты антипротон , антинейтрон и ряд гиперонов. В 60-е гг. было обнаружено значительное число частиц с крайне малым временем жизни, которые получили названиерезонансов . Как выяснилось, к резонансам относится большинство известных элементарных частиц. В середине 70-х гг. было открыто новое семейство элементарных частиц, получивших романтическое название«очарованных », а в начале 80-х – семейства« красивых » частиц и так называемыхпромежуточных векторных бозонов . Открытие этих частиц явилось блестящим подтверждением теории, основанной накварковой модели элементарных частиц, которая предсказала существование новых частиц задолго до их обнаружения.

Таким образом, за время после открытия первой элементарной частицы – электрона – в природе выявлено множество (около 400) микрочастиц материи, и процесс открытия новых частиц продолжается. Оказалось, что мир элементарных частиц устроен весьма и весьма сложно, а их свойства разнообразны и зачастую крайне неожиданны.

Все элементарные частицы являются материальными образованиями чрезвычайно малых масс и размеров. Большинство из них имеют массы порядка массы протона (~10 –24 г) и размеры порядка 10 –13 м. Это определяет сугубо квантовую специфику их поведения. Важное квантовое свойство всех элементарных частиц (включая и относящийся к ним фотон) состоит в том, что все процессы с ними происходят в виде последовательности актов их испускания и поглощения (способность рождаться и уничтожаться при взаимодействии с другими частицами). Процессы с участием элементарных частиц относятся ко всем четырем видам фундаментального взаимодействия: сильному, электромагнитному, слабому и гравитационному.Сильным взаимодействием обусловлена связь нуклонов в атомном ядре.Электромагнитное взаимодействие обеспечивает связь электронов с ядрами в атоме, а также связь атомов в молекулах.Слабое взаимодействие вызывает, в частности, распад квазистабильных (т. е. относительно долгоживущих) частиц, имеющих время жизни в пределах 10 –12 ÷ 10 –14 с.Гравитационное взаимодействие на характерных для элементарных частиц расстояниях ~10 –13 см, в силу малости их массы, имеет крайне малую интенсивность, однако может оказаться существенным на сверхмалых расстояниях. Интенсивности взаимодействий: сильного, электромагнитного, слабого и гравитационного – при умеренной энергии процессов относятся соответственно как 1: 10 –2: 10 –10: 10 –38 . Вообще же с ростом энергии частиц это соотношение изменяется.

Элементарные частицы классифицируют по различным признакам, и надо сказать, что в целом принятая их классификация достаточно сложна.

В зависимости от участия в различных видах взаимодействия все известные частицы делят на две основные группы: адроны илептоны .

Адроны участвуют во всех видах взаимодействия, включая сильное. Они получили свое название от греч. «большой, сильный».

Лептоны не участвуют в сильном взаимодействии. Их название происходит от греч. «легкий, тонкий», поскольку массы известных до середины 70-х гг. частиц этого класса были заметно меньше масс всех других частиц (кроме фотона).

К адронам относятся все барионы (группа частиц с массой не меньше массы протона, названных так от греч. «тяжелый») имезоны . Самым легким барионом являетсяпротон .

Лептонами являются, в частности, электрон ипозитрон ,мюоны обоих знаков,нейтрино трех видов (легкие, электрически нейтральные частицы, участвующиетолько в слабом и гравитационном взаимодействиях ). Предполагается, что нейтрино столь же распространены в природе, как и фотоны, к их образованию приводит множество различных процессов. Отличительной особенностью нейтрино является его огромная проникающая способность, особенно при низких энергиях. Завершая классификацию по видам взаимодействия, следует отметить, чтофотон принимает участие только в электромагнитном и гравитационном взаимодействиях . Кроме того, в соответствии с теоретическими моделями, направленными на объединение всех четырех видов взаимодействия, существует гипотетическая частица, переносящая гравитационное поле, которая получила названиегравитон . Особенность гравитона состоит в том, что он (согласно теории) участвуеттолько в гравитационном взаимодействии . Заметим, что теория связывает с квантовыми процессами гравитационного взаимодействия еще две гипотетические частицы –гравитино игравифотон . Экспериментальное обнаружение гравитонов, т. е., по сути, гравитационного излучения, крайне затруднено из-за его чрезвычайно слабого взаимодействия с веществом.

В зависимости от времени жизни элементарные частицы разделяют на стабильные, квазистабильные инестабильные (резонансы ).

Стабильными частицами являются электрон (его время жизни τ > 10 21 лет), протон (τ > 10 31 лет), нейтрино и фотон. Квазистабильными считаются частицы, распадающиеся за счет электромагнитного и слабого взаимодействий, их время жизни τ > 10 –20 c.Резонансы – частицы, распадающиеся в результате сильного взаимодействия, их время жизни находится в интервале 10 – 22 ÷10 – 24 с.

Распространенным является еще один вид подразделения элементарных частиц. Системы частиц с нулевым и целым спином подчиняются статистике Бозе Эйнштейна , поэтому такие частицы принято называтьбозонами . Совокупность же частиц с полуцелым спином описываетсястатистикой Ферми Дирака , отсюда и название таких частиц –фермионы .

Каждая элементарная частица характеризуется определенным набором дискретных физических величин – квантовых чисел . Общими для всех частиц характеристиками являютсямасса m ,время жизни τ,спин J иэлектрический заряд Q . Спин элементарных частиц принимает значения, равные целым или полуцелым кратным постоянной Планка. Электрические заряды частиц являются целыми кратными величине заряда электрона, считающегосяэлементарным электрическим зарядом .

Кроме того, элементарные частицы дополнительно характеризуются так называемыми внутренними квантовыми числами . Лептонам приписывается специфическийлептонный заряд L = ±1, адроны с полуцелым спином несутбарионный заряд В = ±1 (адроны с В = 0 образуют подгруппу мезонов).

Важной квантовой характеристикой адронов является внутренняя четность Р , принимающая значение ±1 и отражающая свойство симметрии волновой функции частицы относительно пространственной инверсии (зеркального отображения). Несмотря на несохранение четности при слабом взаимодействии, частицы с хорошей точностью принимают значения внутренней четности, равные либо +1, либо – 1.

Адроны, кроме того, подразделяются на обычные частицы (протон, нейтрон, пи-мезоны), странные частицы (К -мезоны, гипероны, некоторые резонансы), «очарованные» и «красивые» частицы. Им соответствуют особые квантовые числа:странность S ,очарование С икрасота b . Эти квантовые числа введены в соответствии скварковой моделью для истолкования специфических процессов, характерных для этих частиц.

Среди адронов имеются группы (семейства) частиц с близкими массами, одинаковыми внутренними квантовыми числами, но различающиеся электрическим зарядом. Такие группы называются изотопическими мультиплетами и характеризуются общим квантовым числом –изотопическим спином , принимающим, как и обычный спин, целые и полуцелые значения.

В чем состоит уже неоднократно упоминавшаяся кварковая модель адронов ?

Обнаружение закономерности группировки адронов в мультиплеты послужило основанием для предположения о существовании особых структурных образований, из которых построены адроны, – кварков . Допуская существование таких частиц, можно считать, что все адроны являются комбинациями кварков. Эта смелая и эвристически продуктивная гипотеза была выдвинута в 1964 г. американским физикомМарри Гелл-Маном . Суть ее состояла в предположении о наличии трех фундаментальных частиц с полуцелым спином, являющихся материалом для построения адронов:u -,d - иs -кварков. В дальнейшем на основе новых экспериментальных данных кварковая модель строения адронов пополнилась еще двумя кварками: «очарованным» (с ) и «красивым» (b ). Считается возможным существование и других типов кварков. Отличительная особенность кварков состоит в том, что они обладаютдробными значениями электрического и барионного зарядов, не встречающимися ни у одной из известных частиц. С кварковой моделью согласуются все экспериментальные результаты по изучению элементарных частиц.

Согласно кварковой модели, барионы состоят из трех кварков, мезоны – из кварка и антикварка . Поскольку некоторые барионы являются комбинацией трех кварков в одном и том же состоянии, что запрещено принципом Паули (см. выше), каждому типу («аромату ») кварка было приписано дополнительное внутреннее квантовое число«цвет» . Кварк каждого типа («аромата» –u, d, s, c, b ) может находиться в трех «цветовых» состояниях. В связи с использованием цветовых понятий теория сильного взаимодействия кварков получила названиеквантовой хромодинамики (от греч. «цвет»).

Можно считать, что кварки являются новыми элементарными частицами, причем они претендуют на роль истинно элементарных частиц для адронной формы материи. Однако остается неразрешенной проблема наблюдения свободных кварков и глюонов. Несмотря на систематические поиски в космических лучах, на ускорителях высокой энергии, обнаружить их в свободном состоянии пока так и не удалось. Имеются веские основания считать, что здесь физика столкнулась с особым явлением природы – так называемым удержанием кварков .

Дело в том, что существуют серьезные теоретические и экспериментальные доводы в пользу предположения о том, что силы взаимодействия кварков с расстоянием не ослабевают. Это означает, что для разделения кварков требуется бесконечно большая энергия, следовательно, появление кварков в свободном состоянии невозможно. Это обстоятельство придает кваркам статус совершенно особых структурных единиц вещества. Возможно, именно начиная с кварков принципиально невозможно опытное наблюдение ступеней дробления материи. Признание кварков в качестве реально существующих объектов материального мира не только олицетворяет собой яркий случай первичности идеи по отношению к существованию материальной сущности. Встает вопрос о пересмотре таблицы фундаментальных мировых постоянных, ибо заряд кварка втрое меньше заряда протона, а следовательно, и электрона.

Начиная с открытия позитрона наука встретилась с частицами антивещества. Сегодня очевидным является то, что для всех элементарных частиц с ненулевыми значениями хотя бы одного из квантовых чисел, таких как электрический заряд Q ,лептонный заряд L ,барионный заряд В ,странность S ,очарование С икрасота b , существуютантичастицы с теми же значениями массы, времени жизни, спина, но с противоположными знаками вышеуказанных квантовых чисел. Известны частицы, тождественные своим античастицам, они называютсяистинно нейтральными . Примерами истинно нейтральных частиц служат фотон и один из трех пи-мезонов (два других являются по отношению друг к другу частицей и античастицей).

Характерной особенностью взаимодействия частиц и античастиц является их аннигиляция при столкновении, т. е. взаимоуничтожение с образованием других частиц и выполнением законов сохранения энергии, импульса, заряда и т. п. Типичным примером аннигиляции пары является процесс превращения электрона и его античастицы – позитрона – в электромагнитное излучение (в фотоны или гамма-кванты). Аннигиляция пар происходит не только при электромагнитном взаимодействии, но и при сильном взаимодействии. При высоких энергияхлегкие частицы могут аннигилировать с образованием более тяжелых частиц – при условии, что полная энергия аннигилирующих частиц превышает порог рождения тяжелых частиц (равный сумме их энергий покоя).

При сильном и электромагнитном взаимодействиях имеет место полная симметрия между частицами и их античастицами, т. е. все процессы, происходящие между первыми, возможны и для вторых. Поэтому антипротоны и антинейтроны могут образовывать ядра атомов антивещества , т. е. из античастиц в принципе вполне может быть построено антивещество. Возникает очевидный вопрос: если каждая частица имеет античастицу, то почему же в изученной области Вселенной отсутствуют скопления антивещества? Действительно, о наличии их во Вселенной, даже где-то «вблизи» Вселенной, можно было бы судить по мощному аннигиляционному излучению, приходящему к Земле из области соприкосновения вещества и антивещества. Однако современная астрофизика не располагает данными, которые позволили бы хотя бы предположить наличие во Вселенной областей, заполненных антивеществом.

Как же произошел во Вселенной выбор в пользу вещества и в ущерб антивеществу, хотя законы симметрии в основном выполняются? Причиной этого феномена, скорее всего, стало именно нарушение симметрии, т. е. флуктуация на уровне основ материи.

Ясно одно: если бы такой флуктуации не возникло, участь Вселенной была бы печальной – вся ее материя существовала бы в виде бесконечного облака фотонов, появившихся в результате аннигиляции частиц вещества и антивещества.

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

1. В чем состоит феномен научных революций? Как он соотносится с общефилософскими законами?

2. Что такое научный метод? Каков его алгоритм? Какую роль при его реализации играет выдвижение гипотез?

3. Изложите смысл принципа соответствия, выдвинутого Н. Бором. Как он определяет судьбу устаревающих теорий?

4. В чем состоит базовая концепция И. Ньютона, положенная им в основу классической физики?

5. Какие обстоятельства привели к смене корпускулярной теории света волновой теорией?

6. Какие взаимодействия между материальными объектами имеют статус фундаментальных?

7. Какое противоречие вызвало необходимость разработки специальной теории относительности?

8. В чем разница между инерциальными и неинерциальными системами отсчета? Как возникла общая теория относительности?

9. В чем состоит принципиальное различие в движении макрообъектов и квантовых частиц? Каким образом атомы вещества испускают кванты излучения?

10. В чем состоит концепция корпускулярно-волнового дуализма материи? Имеется ли у электрона длина волны?

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

1 . Посредством выдвижения и логической проверки гипотез разрешите следующие противоречия:

1.1. Атомное ядро состоит из электрически нейтральных нейтронов и положительно заряженных протонов. Одноименные заряды, как известно, отталкиваются (запишите классическую формулу электростатического закона Кулона, вспомните, какой из законов Ньютона записывается в аналогичной форме).

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

1.2. Объясните, каким образом ядро сохраняет стабильность и высокую плотность. Используйте следующие справочные данные:

– плотность ядра имеет порядок 10 13 г/см 3 , что на 11 порядков больше плотности металлов;

– размер атома порядка 10 –8 см, размер ядра – 10 –13 см;

– в природе известно четыре вида фундаментальных взаимодействий: гравитационное, электромагнитное, сильное и слабое;

– интенсивность фундаментальных взаимодействий убывает от сильного к электромагнитному и далее к слабому и гравитационному в соотношении: 1: 10 –2: 10 –8: 10 –38 .

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

Проверьте все возможные гипотезы и найдите единственную логически непротиворечивую. Начните с выдвижения гипотезы общего вида.

2 . Волновая теория света утвердилась после успешного объяснения широкого круга световых явлений, в том числе явлений дифракции и интерференции, которые в понятиях корпускулярной теории света не могут быть объяснены.

Объясните :

2.1. Каким образом при интерференции происходит гашение света светом, не нарушается ли при этом закон сохранения энергии.

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

2.2. В чем состоит сходство и в чем – отличие явлений, определяемых явно созвучными терминами «рефракция» и «дифракция».

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

Ответьте на следующие вопросы :

2.3. Какие явления не могут быть объяснены в понятиях волновой теории света?

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

2.4. В чем состоит концепция корпускулярно-волнового дуализма и какой общефилософский закон она отражает?

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

2.5. Какими экспериментами можно осуществить эмпирическую проверку гипотезы о наличии у частиц вещества (например, электронов) волновых свойств?

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

2.6. Действие какого современного прибора основано на использовании волновых свойств электронов?

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

3 . В соответствии с классификацией элементарных частиц по их участию в фундаментальных взаимодействиях фотон участвует не только в электромагнитном, но и в гравитационном взаимодействии. Известно также, что масса покоя фотона равна нулю.

Следовательно, если руководствоваться законом всемирного тяготения Ньютона, возникает явное противоречие.

3.1. Разрешите это противоречие, исходя из следующих данных:

– закон всемирного тяготения, точно прогнозируя результат измерения, не вскрывает природы гравитации;

– природу гравитации объясняет общая теория относительности, показывающая, что тяготеющая материя изменяет геометрию пространства-времени.

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

3.2. Объясните, как определяется масса релятивистской частицы.

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

3.3. Почему никакая релятивистская частица, кроме ультрарелятивистского фотона, не может достичь скорости света?

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

_____________________________________________________________________________________________________________________

ЛИТЕРАТУРА

Основная :

1. Азимов А. Выбор катастроф. – М.: Амфора, 2001.

2. Вернадский В. И. Философские мысли натуралиста. – М., 1988.

3. Дубнищева Т. Я. Концепции современного естествознания. – Новосибирск, 1988.

4. Пригожин И., Стенгерс И. Порядок из хаоса. – М., 1986.

5. Салопов Е. Ф. Концепции современного естествознания. – М.: Владос, 1998.

Дополнительная :

6. Вайнберг С. Первые три минуты. Современный взгляд на происхождение Вселенной – М.: Наука, 1981.

7. Гайденко В. Б., Смирнов Г. А. Западноевропейская наука в Средние века. – М.: Наука, 1989.

8. Капица П. Л. Эксперимент, теория, практика. – М.: Наука, 1981.

9. Кириллин В. А. Страницы истории науки и техники. – М.: Наука. 1986.

10. Клименко И. С., Энгвер Н. Н. Концепции современного естествознания. – М., 2002.

11. Кун Т. Структура научных революций – М.: Прогресс, 1975.

12. Лакатос И. Методология научных исследовательских программ // Вопросы философии. – 1995. – № 4.

13. Лосев А. Ф., Тахо-Годи А. А. Платон. Аристотель. – М.: Молодая гвардия, 1993.

14. Эйнштейн А., Инфельд Л. Эволюция физики. – М.: Молодая гвардия, 1966.

15. Эмсли Дж. Элемент. – М.: Мир, 1993.

ТЕРМИНОЛОГИЧЕСКИЙ СЛОВАРЬ

Адроны (от греч. αδpos – большой, сильный) – класс элементарных частиц, участвующих всильном взаимодействии . К адронам относятся всебарионы имезоны , включаярезонансы .

Алгоритм (от лат. algorithmi – транслитерации имени среднеазиатского ученого аль-Хорезми, оказавшего большое влияние на развитие математики в Европе) – конечный набор правил, позволяющих чисто механически решать любую конкретную задачу из некоторого класса однотипных задач.

Анализ (от лат. analysis – разложение, расчленение) – метод научного исследования, состоящий в мысленном или фактическом разложении целого на составные части (элементы); часто используется как синоним научного исследования вообще; анализ неразрывно связан ссинтезом (соединение элементов в единое целое).

Аннигиляция (от позднелат. annihilatio – исчезновение, превращение в ничто) – один из видов взаимопревращений элементарных частиц, происходящий при столкновении частицы с античастицей; при аннигиляцииматерия не исчезает, а превращается из одной формы в другую, например при аннигиляцииэлектрона ипозитрона возникаюткванты электромагнитного излучения.

Античастицы (от греч. αυτι – против) – элементарные частицы, имеющие ту же массу, спин, время жизни и другие внутренние характеристики, что и их «двойники», но отличающиеся от них знаком некоторых характеристик взаимодействия (например, электрического заряда, магнитного момента).

Атом (от греч. αтομοs – неделимый) – мельчайшая частица химического элемента, сохраняющая его свойства; состоит из тяжелогоядра , обладающего положительным электрическим зарядом, и окружающих его легких частиц –электронов с отрицательными электрическими зарядами, образующих электронные оболочки атома.

Барионы (от греч. βαρυς – тяжелый) – группа «тяжелых» элементарных частиц с полуцелымспином и массой, не меньшей массыпротона ; участвуют во всех известных фундаментальных взаимодействиях. К барионам относятсянуклоны (протон инейтрон ),гипероны , а также многиерезонансы и «очарованные» частицы .

Близкодействие – представление, согласно которому взаимодействие между удаленными друг от друга телами осуществляется через промежуточную среду или промежуточные звенья, передающие взаимодействие от точки к точке с конечной скоростью.

Верификация (от лат. verus – истинный и facio – делаю) – проверка, эмпирическое подтверждение теоретических положений науки путем сопоставления их с наблюдаемыми объектами, данными экспериментов.

Волновая функция – в квантовой механике величина, полностью описывающая состояние микрообъекта и вообще любой квантовой системы. Квадрат волновой функции дает значение вероятностей тех величин, от которых зависит сама волновая функция. Волновую функцию называют также амплитудой вероятности.

Гипотеза (от греч. υποθεσις – основание) – научное предположение, выдвигаемое для объяснения какого-либо явления и требующее проверки на опыте и теоретического обоснования для того, чтобы стать достоверной научной теорией.

Дальнодействие – представление, согласно которому действие тел друг на друга передается мгновенно через пустоту на сколь угодно большие расстояния; открытие электромагнитного поля показало, что концепция дальнодействия неверна.

Детерминизм (от лат. determino – определять) – философское учение об объективной закономерной взаимосвязи и причинной обусловленности всех явлений.

Дискретность (от лат. discretus – разделенный) – прерывность; противопоставляется непрерывности, вместе с ней составляет категории, характеризующие строение материи и процесс ее развития.

Дифракция (от лат. diffractus – разломанный) – отклонение волн, возникающее при их распространении в неоднородных средах, огибание ими препятствий.

Инвариантность (от лат. invariantis – неизменяющийся) – неизменность какой-либо величины при изменении физических условий или по отношению к некоторым преобразованиям, обычно преобразованиям координат и времени.

Интеграция (от лат. integratio – восстановление) – процесс сближения и связи наук, происходящий наряду с процессами ихдифференциации ; вообще – понятие, означающее состояние связанности отдельных частей системы в целое, а также процесс, ведущий к такому состоянию.

Интерференция волн – явление, наблюдающееся при одновременном распространении в пространстве двух или нескольких волн, когда при их сложении в разных точках пространства происходит усиление или ослабление результирующей волны. Интерференция характерна для волн любой природы.

Квант – понятие, введенное М. Планком для обозначения элементарной дискретной порции энергии.

Кварки – гипотетические материальные частицы, из которых, по современным представлениям, состоят всеадроны . В наиболее распространенном варианте теории постулируется существование четырех кварков (и соответствующих антикварков), каждый из которых может находиться в трех состояниях, различающихся квантовым числом – «цветом».

Концепция (от лат. conceptio – система) – определенный способ понимания, трактовки каких-либо явлений, основная точка зрения, руководящая идея для их освещения; ведущий замысел, конструктивный принцип различных видов интеллектуальной деятельности.

Корпускулярно-волновой дуализм – положение о том, что любые микрообъекты материи (фотоны, электроны, протоны и др.) обладают свойствами и частиц (корпускул), и волн.

Лептоны (от греч. λεπτος – легкий) –элементарные частицы с полуцелымспином , не участвующие в сильном взаимодействии. К лептонам относятсяэлектрон ,мюон ,нейтрино и другие частицы.

Мезоны (от греч. μεσος – средний, промежуточный) – нестабильныеэлементарные частицы с нулевым или целымспином , принадлежащие к классуадронов и не имеющие барионного заряда; являются переносчиками ядерных сил.

Нейтрино (итал. neutrino – уменьшительное от «нейтрон») – стабильная, незаряженная элементарная частица с полуцелым спином и, предположительно, нулевой массой; относится клептонам , участвует только в слабом и гравитационном взаимодействии.

Нейтрон (англ. neutron, от лат. neuter – ни тот, ни другой) – электрически нейтральнаяэлементарная частица с полуцелымспином и массой, незначительно превышающей массупротона ; относится к классуадронов и входит в группубарионов . Из нейтронов и протонов построены всеатомные ядра .

Неопределенности принцип – фундаментальное положение квантовой теории, утверждающее, что любая физическая система не может находиться в состояниях, в которых координаты ее центра инерции и импульс одновременно принимают вполне определенные значения.

Нуклон (от лат. nucleus – ядро) – общее названиепротона инейтрона , являющихся составными частямиатомных ядер .

Парадигма (от греч. παραδειγμα – образец) – исходная концептуальная модель постановки проблем и их решения, методов исследования, господствующих в течение определенного исторического периода в научном соообществе.

Позитрон (от лат. positivus – положительный) – элементарная частица с положительным электрическим зарядом,античастица по отношению кэлектрону .

Постулат (от лат. postulatum – требование) – утверждение, принимаемое в рамках какой-либо научной теории за истинное, хотя и не доказуемое ее средствами, и поэтому играющее в ней роль аксиомы.

Протон (от греч. πρωτος – первый) – стабильнаяэлементарная частица с полуцелым спином и массой в 1836 электронных масс.

Соответствия принцип – сформулированный Н. Бором принцип взаимоотношений последовательно меняющих друг друга теорий, заключающийся в том, что всякая новая теория не отвергает полностью предшествующую, а включает ее в себя в качестве частного случая.

Спин (от англ. spin – вращение) – собственный момент импульса (количества движения) микрочастицы, имещий квантовую природу и не связанный с перемещением частицы как целого; измеряется в единицах постоянной Планка.

Фальсификации принцип (от лат. falsifico – подделывать) – принцип разграничения научного и ненаучного знания, состоящий в том, что критерием научности теории является ее фальсифицируемость, т. е. опровержимость.

Фотон (от греч. φωτος – свет) – квант электромагнитного поля, нейтральнаяэлементарная частица с нулевой массой и единичным спином.

Флуктуации (от лат. fluctuatio – колебание) – случайные отклонения от средних значений наблюдаемых величин, характеризующих систему из большого числа частиц; имеют место для любых случайных процессов.

Эволюция (от лат. evolutio – развертывание) – представление об изменениях в природе и обществе, их направленности, порядке и закономерностях.

Электрон – перваяэлементарная частица , открытая в физике, материальный носитель наименьшей массы и наименьшего электрического заряда в природе.

Элементарные частицы

Энтропия (от греч. εν + τροπη – превращение) – функция состояния термодинамической системы. Неравновесные процессы в изолированной системе сопровождаются ростом энтропии. Понятие энтропии широко используется в физике, химии, биологии, теории информации.

Ядро атомное – центральная массивная часть атома, состоящая изнуклонов (протонов и нейтронов), связанных ядерными силами.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

КАЛИНИНГРАДСКИЙ ПОГРАНИЧНЫЙ ИНСТИТУТ ФЕДЕРАЛЬНОЙ СЛУЖБЫ БЕЗОПАСНОСТИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЦЕНТР ДОПОЛНИТЕЛЬНОГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

по дисциплине

"Концепция современного естествознания"

"История открытия элементарных частиц"

Содержание

  • Введение
    • Электрон
    • Фотон
    • Протон
    • Нейтрон
    • Позитрон
    • Нейтрино
    • Открытие странных частиц
    • "Очаровательные" частицы
    • Заключение
    • Список использованной литературы

Введение

Элементарные частицы в точном значении этого термина - первичные, далее неразложимые частицы, из которых, по предположению, состоит вся материя. В понятии элементарные частицы в современной физике находит выражение идея о первообразных сущностях, определяющих все известные свойства материального мира, идея, зародившаяся на ранних этапах становления естествознания и всегда игравшая важную роль в его развитии.

Существование элементарных частиц физики обнаружили при изучении ядерных процессов, поэтому вплоть до середины XX века физика элементарных частиц была разделом ядерной физики. В настоящее время физика элементарных частиц и ядерная физика являются близкими, но самостоятельными разделами физики, объединенными общностью многих рассматриваемых проблем и применяемыми методами исследования. Главная задача физики элементарных частиц - это исследование природы, свойств и взаимных превращений элементарных частиц.

Открытие элементарных частиц явилось закономерным результатом общих успехов в изучении строения вещества, достигнутых физикой в конце 19 в. Оно было подготовлено всесторонними исследованиями оптических спектров атомов, изучением электрических явлений в жидкостях и газах, открытием фотоэлектричества, рентгеновских лучей, естественной радиоактивности, свидетельствовавших о существовании сложной структуры материи.

В 60-70-е годы физики были совершенно сбиты с толку многочисленностью, разнообразием и необычностью вновь открытых субатомных частиц. Казалось, им не будет конца. Совершенно непонятно, для чего столько частиц. Являются ли эти элементарные частицы хаотическими и случайными осколками материи? Или, возможно, они таят в себе ключ к познанию структуры Вселенной? Развитие физики в последующие десятилетия показало, что в существовании такой структуры нет никаких сомнений.

Понятие “Элементарные частицы" сформировалось в тесной связи с установлением дискретного характера строения вещества на микроскопическом уровне. Обнаружение на рубеже 19-20 вв. мельчайших носителей свойств вещества - молекул и атомов - и установление того факта, что молекулы построены из атомов, впервые позволило описать все известные вещества как комбинации конечного, хотя и большого, числа структурных составляющих - атомов. Выявление в дальнейшем наличия составных слагающих атомов - электронов и ядер, установление сложной природы ядер, оказавшихся построенными всего из двух типов частиц (протонов и нейтронов), существенно уменьшило количество дискретных элементов, формирующих свойства вещества, и дало основание предполагать, что цепочка составных частей материи завершается дискретными бесструктурными образованиями - элементарными частицами. Такое предположение, вообще говоря, является экстраполяцией известных фактов и сколько-нибудь строго обосновано быть не может. Нельзя с уверенностью утверждать, что частицы, элементарные в смысле приведённого определения, существуют. Протоны и нейтроны, например, длительное время считавшиеся элементарными частицами, как выяснилось, имеют сложное строение. Не исключена возможность того, что последовательность структурных составляющих материи принципиально бесконечна. Существование элементарных частиц - это своего рода постулат, и проверка его справедливости - одна из важнейших задач физики.

История открытия элементарных частиц

Представление о том, что мир состоит из фундаментальных частиц, имеет долгую историю. Впервые мысль о существовании мельчайших невидимых частиц, из которых состоят все окружающие предметы, была высказана за 400 лет до нашей эры греческим философом Демокритом. Он назвал эти частицы атомами, то есть неделимыми частицами. Наука начала использовать представление об атомах только в начале XIX века, когда на этой основе удалось объяснить целый ряд химических явлений. В 30-е годы XIX века в теории электролиза, развитой М. Фарадеем, появилось понятие иона и было выполнено измерение элементарного заряда. Конец XIX века ознаменовался открытием явления радиоактивности (А. Беккерель, 1896 г), а также открытиями электронов (Дж. Томсон, 1897 г) и б-частиц (Э. Резерфорд, 1899 г). В 1905 году в физике возникло представление о квантах электромагнитного поля - фотонах (А. Эйнштейн).

В 1911 году было открыто атомное ядро (Э. Резерфорд) и окончательно было доказано, что атомы имеют сложное строение. В 1919 году Резерфорд в продуктах расщепления ядер атомов ряда элементов обнаружил протоны. В 1932 году Дж. Чедвик открыл нейтрон. Стало ясно, что ядра атомов, как и сами атомы, имеют сложное строение. Возникла протон-нейтронная теория строения ядер (Д.Д. Иваненко и В. Гейзенберг). В том же 1932 году в космических лучах был открыт позитрон (К. Андерсон). Позитрон - положительно заряженная частица, имеющая ту же массу и тот же (по модулю) заряд, что и электрон. Существование позитрона было предсказано П. Дираком в 1928 году. В эти годы были обнаружены и исследованы взаимные превращения протонов и нейтронов и стало ясно, что эти частицы также не являются неизменными элементарными "кирпичиками" природы. В 1937 году в космических лучах были обнаружены частицы с массой в 207 электронных масс, названные мюонами (м-мезонами). Затем в 1947-1950 годах были открыты пионы (то есть р-мезоны), которые, по современным представлениям, осуществляют взаимодействие между нуклонами в ядре. В последующие годы число вновь открываемых частиц стало быстро расти. Этому способствовали исследования космических лучей, развитие ускорительной техники и изучение ядерных реакций.

В настоящее время известно около 400 субъядерных частиц, которые принято называть элементарными. Подавляющее большинство этих частиц являются нестабильными. Исключение составляют лишь фотон, электрон, протон и нейтрино. Все остальные частицы через определенные промежутки времени испытывают самопроизвольные превращения в другие частицы. Нестабильные элементарные частицы сильно отличаются друг от друга по временам жизни. Наиболее долгоживущей частицей является нейтрон. Время жизни нейтрона порядка 15 мин. Другие частицы "живут" гораздо меньшее время. Например, среднее время жизни м-мезона равно 2,2·10 - 6 с, нейтрального р-мезона - 0,87·10 - 16 с. Многие массивные частицы - гипероны имеют среднее время жизни порядка 10 - 10 с.

Существует несколько десятков частиц со временем жизни, превосходящим 10 - 17 с. По масштабам микромира это значительное время. Такие частицы называют относительно стабильными. Большинство короткоживущих элементарных частиц имеют времена жизни порядка 10 - 22 -10 - 23 с.

Способность к взаимным превращениям - это наиболее важное свойство всех элементарных частиц. Элементарные частицы способны рождаться и уничтожаться (испускаться и поглощаться). Это относится также и к стабильным частицам с той только разницей, что превращения стабильных частиц происходят не самопроизвольно, а при взаимодействии с другими частицами. Примером может служить аннигиляция (то есть исчезновение) электрона и позитрона, сопровождающаяся рождением фотонов большой энергии. Может протекать и обратный процесс - рождение электронно-позитронной пары, например, при столкновении фотона с достаточно большой энергией с ядром. Такой опасный двойник, каким для электрона является позитрон, есть и у протона. Он называется антипротоном. Электрический заряд антипротона отрицателен. В настоящее время античастицы найдены у всех частиц. Античастицы противопоставляются частицам потому, что при встрече любой частицы со своей античастицей происходит их аннигиляция, то есть обе частицы исчезают, превращаясь в кванты излучения или другие частицы.

Античастица обнаружена даже у нейтрона. Нейтрон и антинейтрон отличаются только знаками магнитного момента и так называемого барионного заряда. Возможно существование атомов антивещества, ядра которых состоят из антинуклонов, а оболочка - из позитронов. При аннигиляции антивещества с веществом энергия покоя превращается в энергию квантов излучения. Это огромная энергия, значительно превосходящая ту, которая выделяется при ядерных и термоядерных реакциях.

В многообразии элементарных частиц, известных к настоящему времени, обнаруживается более или менее стройная система классификации.

Элементарные частицы объединяются в три группы: фотоны, лептоны и адроны.

К группе фотонов относится единственная частица - фотон, которая является носителем электромагнитного взаимодействия.

Следующая группа состоит из легких частиц лептонов. В эту группу входят два сорта нейтрино (электронное и мюонное), электрон и м-мезон.

Третью большую группу составляют тяжелые частицы, называемые адронами. Эта группа делится на две подгруппы. Более легкие частицы составляют подгруппу мезонов. Наиболее легкие из них - положительно и отрицательно заряженные, а также нейтральные р-мезоны с массами порядка 250 электронных масс. Пионы являются квантами ядерного поля, подобно тому, как фотоны являются квантами электромагнитного поля. В эту подгруппу входят также четыре K-мезона и один з 0 -мезон. Все мезоны имеют спин, равный нулю.

Вторая подгруппа - барионы - включает более тяжелые частицы. Она является наиболее обширной. Самыми легкими из барионов являются нуклоны - протоны и нейтроны. За ними следуют так называемые гипероны. Замыкает таблицу омега-минус-гиперон, открытый в 1964 г.

Обилие открытых и вновь открываемых адронов навела ученых на мысль, что все они построены из каких-то других более фундаментальных частиц. В 1964 г. американским физиком М. Гелл-Маном была выдвинута гипотеза, подтвержденная последующими исследованиями, что все тяжелые фундаментальные частицы - адроны - построены из более фундаментальных частиц, названных кварками. На основе кварковой гипотезы не только была понята структура уже известных адронов, но и предсказано существование новых. Теория Гелл-Мана предполагала существование трех кварков и трех антикварков, соединяющихся между собой в различных комбинациях. Так, каждый барион состоит из трех кварков, антибарион - из трех антикварков. Мезоны состоят из пар кварк-антикварк.

С принятием гипотезы кварков удалось создать стройную систему элементарных частиц. Однако предсказанные свойства этих гипотетических частиц оказались довольно неожиданными. Многочисленные поиски кварков свободном состоянии, производившиеся на ускорителях высоких энергий и в космических лучах, оказались безуспешными. Ученые считают, что одной из причин ненаблюдаемости свободных кварков являются, возможно, их очень большие массы. Это препятствует рождению кварков при тех энергиях, которые достигаются на современных ускорителях. Тем не менее, большинство специалистов сейчас уверены в том, что кварки существуют внутри тяжелых частиц - адронов.

Фундаментальные взаимодействия. Процессы, в которых участвуют различные элементарные частицы, сильно различаются по характерным временам их протекания и энергиям. Согласно современным представлениям, в природе осуществляется четыре типа взаимодействий, которые не могут быть сведены к другим, более простым видам взаимодействий: сильное, электромагнитное, слабое и гравитационное. Эти типы взаимодействий называют фундаментальными.

Сильное (или ядерное) взаимодействие - это наиболее интенсивное из всех видов взаимодействий. Они обуславливает исключительно прочную связь между протонами и нейтронами в ядрах атомов. В сильном взаимодействии могут принимать участие только тяжелые частицы - адроны (мезоны и барионы). Сильное взаимодействие проявляется на расстояниях порядка и менее 10 - 15 м. Поэтому его называют короткодействующим.

Электромагнитное взаимодействие. В этом виде взаимодействия могут принимать участие любые электрически заряженные частицы, а так же фотоны - кванты электромагнитного поля. Электромагнитное взаимодействие ответственно, в частности, за существование атомов и молекул. Оно определяет многие свойства веществ в твердом, жидком и газообразном состояниях. Кулоновское отталкивание протонов приводит к неустойчивости ядер с большими массовыми числами. Электромагнитное взаимодействие обуславливает процессы поглощения и излучения фотонов атомами и молекулами вещества и многие другие процессы физики микро - и макромира.

Слабое взаимодействие - наиболее медленное из всех взаимодействий, протекающих в микромире. В нем могут принимать участие любые элементарные частицы, кроме фотонов.

Гравитационное взаимодействие присуще всем без исключения частицам, однако из-за малости масс элементарных частиц силы гравитационного взаимодействия между ними пренебрежимо малы и в процессах микромира их роль несущественна. Гравитационные силы играют решающую роль при взаимодействии космических объектов (звезды, планеты и т.п.) с их огромными массами.

В 30-е годы XX века возникла гипотеза о том, что в мире элементарных частиц взаимодействия осуществляются посредством обмена квантами какого-либо поля. Эта гипотеза первоначально была выдвинута нашими соотечественниками И.Е. Таммом и Д.Д. Иваненко. Они предположили, что фундаментальные взаимодействия возникают в результате обмена частицами, подобно тому, как ковалентная химическая связь атомов возникает при обмене валентными электронами, которые объединяются на незаполненных электронных оболочках.

Взаимодействие, осуществляемое путем обмена частицами, получило в физике название обменного взаимодействия. Так, например, электромагнитное взаимодействие между заряженными частицами, возникает вследствие обмена фотонами - квантами электромагнитного поля.

Теория обменного взаимодействия получила признание после того, как в 1935 г. японский физик Х. Юкава теоретически показал, что сильное взаимодействие между нуклонами в ядрах атомов может быть объяснено, если предположить, что нуклоны обмениваются гипотетическими частицами, получившими название мезонов. Юкава вычислил массу этих частиц, которая оказалась приблизительно равной 300 электронным массам. Частицы с такой массой были впоследствии действительно обнаружены. Эти частицы получили название р-мезонов (пионов). В настоящее время известны три вида пионов: р + , р - и р 0 .

В 1957 году было теоретически предсказано существование тяжелых частиц, так называемых векторных бозонов W + , W - и Z 0 , обуславливающих обменный механизм слабого взаимодействия. Эти частицы были обнаружены в 1983 году в экспериментах на ускорителе на встречных пучках протонов и антипротонов с высокой энергией. Открытие векторных бозонов явилось очень важным достижением физики элементарных частиц. Это открытие ознаменовало успех теории, объединившей электромагнитное и слабое взаимодействия в единое так называемое электрослабое взаимодействие. Эта новая теория рассматривает электромагнитное поле и поле слабого взаимодействия как разные компоненты одного поля, в котором наряду с квантом электромагнитного поля участвуют векторные бозоны.

После этого открытия в современной физике значительно возросла уверенность в том, что все виды взаимодействия тесно связаны между собой и, по существу, являются различными проявлениями некоторого единого поля. Однако объединение всех взаимодействий остается пока лишь привлекательной научной гипотезой.

Физики-теоретики прилагают значительные усилия в попытках рассмотреть на единой основе не только электромагнитное и слабое, но и сильное взаимодействие. Эта теория получила название Великого объединения. Ученые предполагают, что и у гравитационного взаимодействия должен быть свой переносчик - гипотетическая частица, названная гравитоном. Однако эта частица до сих пор не обнаружена.

В настоящее время считается доказанным, что единое поле, объединяющее все виды взаимодействия, может существовать только при чрезвычайно больших энергиях частиц, недостижимых на современных ускорителях. Такими большими энергиями частицы могли обладать только на самых ранних этапах существования Вселенной, которая возникла в результате так называемого Большого взрыва (Big Bang). Космология - наука об эволюции Вселенной - предполагает, что Большой взрыв произошел 18 миллиардов лет тому назад. В стандартной модели эволюции Вселенной предполагается, что в первый период после взрыва температура могла достигать 10 32 К, а энергия частиц E = kT достигать значений 10 19 ГэВ. В этот период материя существовала в форме кварков и нейтрино, при этом все виды взаимодействий были объединены в единое силовое поле. Постепенно по мере расширения Вселенной энергия частиц уменьшалась, и из единого поля взаимодействий сначала выделилось гравитационное взаимодействие (при энергиях частиц? 10 19 ГэВ), а затем сильное взаимодействие отделилось от электрослабого (при энергиях порядка 10 14 ГэВ). При энергиях порядка 10 3 ГэВ все четыре вида фундаментальных взаимодействий оказались разделенными. Одновременно с этими процессами шло формирование более сложных форм материи - нуклонов, легких ядер, ионов, атомов и т.д. Космология в своей модели пытается проследить эволюцию Вселенной на разных этапах ее развития от Большого взрыва до наших дней, опираясь на законы физики элементарных частиц, а также ядерной и атомной физики.

Электрон

Быть может, эти электроны Миры, где пять материков, Искусства, знанья, войны, троны И память сорока веков!

Стихотворение Валерия Брюсова "Мир электрона" было написано 13 августа 1922 г.

Исторически первой открытой элементарной частицей был электрон - носитель отрицательного элементарного электрического заряда в атомах.

Это самая "старая" элементарная частица. В идейном плане он вошел в физику в 1881 г., когда Гельмгольц в речи в честь Фарадея указал, что атомная структура вещества вместе с законами электролиза Фарадея неизбежно приводит к мысли, что электрический заряд всегда должен быть кратен некоторому элементарному заряду, - т.е. к выводу о квантовании электрического заряда. Носителем отрицательного элементарного заряда, как мы теперь знаем, и является электрон.

Максвелл же, создавший фундаментальную теорию электрических и магнитных явлений и использовавший существенным образом экспериментальные результаты Фарадея, не принимал гипотезы атомного электричества.

Между тем "временная" теория о существовании электрона была подтверждена в 1897 г. в экспериментах Дж. Дж. Томсона, в которых он отождествил так называемые катодные лучи с электронами и измерил заряд и массу электрона. Частицы катодных лучей Томсон называл "корпускулами" или изначальными атомами. Слово "электрон" первоначально использовалось для обозначения величины заряда "корпускулы". И только со временем электроном стали называть саму частицу. Однако идея об электроне не сразу получила признание. Когда на лекции в Королевском обществе Дж. Дж. Томсон - первооткрыватель электрона - высказал предположение, что частицы катодных лучей следует рассматривать как возможные компоненты атома, некоторые его коллеги искренне считали, что он мистифицирует их. Сам Планк признавался в 1925 г., что не верил тогда, в 1900г., до конца в гипотезу об электроне.

Можно сказать, что после опытов Милликена, измерившего в 1911г. заряды индивидуальных электронов, эта первая элементарная частица получила право на существование.

Фотон

Прямое экспериментальное доказательство существования фотона было дано Р. Милликеном в 1912-1915 гг. в его исследованиях фотоэффекта, а также А. Комптоном в 1922 г., обнаружившим рассеяние рентгеновских лучей с изменением их частоты.

Фотон - в некотором смысле особая частица. Дело в том, что масса его покоя в отличие от других частиц (кроме нейтрино) равна нулю. Поэтому его стали считать частицей не сразу: вначале полагали, что наличие конечной и отличной от нуля массы покоя - обязательная черта элементарной частицы.

Фотон - это "оживленный" планковский квант света, т.е. квант света, несущий импульс.

Кванты света ввел Планк в 1901 г. для того, чтобы объяснить законы излучения абсолютно черного тела. Но он был не частицами, а только минимально возможными "порциями" энергии света той или иной частоты.

Хотя предположение Планка о квантовании энергии света абсолютно противоречило всей классической теории, сам Планк понял это не сразу. Ученый писал, что он "… пытался как-то ввести величину h в рамки классической теории. Однако вопреки всем таким попыткам эта величина оказалась весьма строптивой". Впоследствии эта величина получила название постоянной Планка (h=6*10 -27 эрг. с).

После введения постоянной Планка ситуация не стала более ясной.

"Живыми" фотоны или кванты сделала теория относительности Эйнштейна, который в 1905 г. показал, что кванты должны иметь не только энергию, но и импульс, и что они являются в полном смысле частицами, только особенными, так как масса покоя их равна нулю, и двигаются они со скоростью света.

Итак вывод о существовании частицы электромагнитного поля - фотона - берёт своё начало с работы М. Планка (1900). Предположив, что энергия электромагнитного излучения абсолютно чёрного тела квантована, Планк получил правильную формулу для спектра излучения. Развивая идею Планка, А. Эйнштейн (1905) постулировал, что электромагнитное излучение (свет) в действительности является потоком отдельных квантов (фотонов), и на этой основе объяснил закономерности фотоэффекта.

Протон

Протон был от крыт Э. Резерфордом в 1919 г. в исследованиях взаимодействия альфа-частиц с атомными ядрами.

Точнее открытие протона связано с открытием атомного ядра. Оно было сделано Резерфордом в результате бомбардировки атомов азота высоко энергетическими б-частицами. Резерфорд заключил, что "ядро атома азота распадается вследствие громадных сил, развивающихся при столкновении с быстрой б-частицей, и что освобождающийся водородный атом образует составную часть ядра азота". В 1920 г. ядра атома водорода были названы Резерфордом протонами (протон по-гречески означает простейший, первичный). Были и другие предложения по поводу названия. Так, например, предлагалось название "барон" (барос по-гречески означает тяжесть). Однако оно подчеркивало только одну особенность ядра водорода - его массу. Термин "протон" был существенно глубже и содержательнее, отражая фундаментальность протона, ибо протон - это простейшее ядро - ядро самого легкого изотопа водорода. Это, несомненно, один из наиболее удачных терминов в физике элементарных частиц. Таким образом, протоны - это частицы с единичным положительным зарядом и массой, в 1840 раз превышающей массу электрона.

Нейтрон

Другая частица, входящая в состав ядра, - нейтрон - была открыта в 1932 Дж. Чедвиком при исследованиях взаимодействия б-частиц с бериллием. Нейтрон имеет массу, близкую к массе протона, но не обладает электрическим зарядом. Открытием нейтрона завершилось выявление частиц - структурных элементов атомов и их ядер.

Открытие изотопов не прояснило вопрос о строении ядра. К этому времени были известны лишь протоны - ядра водорода, и электроны, а потому естественной была попытка объяснить существование изотопов различными комбинациями этих положительно и отрицательно заряженных частиц. Можно было бы думать, что ядра содержат А протонов, где А - массовое число, и А?Z электронов. При этом полный положительный заряд совпадает с атомным номером Z.

Такая простая картина однородного ядра поначалу не противоречила выводу о малых размерах ядра, вытекавшему из опытов Резерфорда. “Естественный радиус” электрона r0 = e 2 /mc 2 (который получается, если приравнять электростатическую энергию e 2 /r0 заряда, распределенного по сферической оболочке, собственной энергии электрона mc 2) составляет r0 = 2,82*10 - 15 м. Такой электрон достаточно мал, чтобы находиться внутри ядра радиусом 10 - 14 м, хотя поместить туда большое число частиц было бы затруднительно. В 1920г. Резерфорд и другие ученые рассматривали возможность существования устойчивой комбинации из протона и электрона, воспроизводящей нейтральную частицу с массой, приблизительно равной массе протона. Однако из-за отсутствия электрического заряда такие частицы с трудом поддавались бы обнаружению. Вряд ли они могли бы и выбивать электроны из металлических поверхностей, как электромагнитные волны при фотоэффекте.

Лишь спустя десятилетие, после того как естественная радиоактивность была глубоко исследована, а радиоактивное излучение стали широко применять, чтобы вызывать искусственное превращение атомов, было надежно установлено существование новой составной части ядра. В 1930 В. Боте и Г. Беккер из Гисенского университета проводили облучение лития и бериллия альфа-частицами и с помощью счетчика Гейгера регистрировали возникающее при этом проникающее излучение. Поскольку на это излучение не оказывали влияния электрические и магнитные поля, и оно обладало большой проникающей способностью, авторы пришли к выводу, что испускается жесткое гамма-излучение. В 1932 Ф. Жолио и И. Кюри повторили опыты с бериллием, пропуская такое проникающее излучение через парафиновый блок. Они обнаружили, что из парафина выходят протоны с необычно высокой энергией, и заключили, что, проходя через парафин, гамма-излучение в результате рассеяния порождает протоны. (В 1923 было установлено, что рентгеновские лучи рассеиваются на электронах, давая комптоновский эффект)

Дж. Чедвик повторил эксперимент. Он также использовал парафин и с помощью ионизационной камеры, в которой собирался заряд, возникающий при выбивании электронов из атомов, измерял пробег протонов отдачи.

Чедвик использовал также газообразный азот (в камере Вильсона, где вдоль следа заряженной частицы происходит конденсация водяных капелек) для поглощения излучения и измерения пробега атомов отдачи азота. Применив к результатам обоих экспериментов законы сохранения энергии и импульса, он пришел к выводу, что обнаруженное нейтральное излучение - это не гамма-излучение, а поток частиц с массой, близкой к массе протона. Чедвик показал также, что известные источники гамма-излучения не выбивают протонов. Тем самым было подтверждено существование новой частицы, которую теперь называют нейтроном.

Расщепление металлического бериллия происходило следующим образом: альфа-частицы 4 2 He (заряд 2, массовое число 4) сталкивались с ядрами бериллия (заряд 4, массовое число 9), в результате чего возникали углерод и нейтрон. Открытие нейтрона явилось важным шагом вперед. Наблюдаемые характеристики ядер теперь можно было интерпретировать, рассматривая нейтроны и протоны как составные части ядер. Нейтрон, как теперь известно, на 0,1% тяжелее протона. Свободные нейтроны (вне ядра) претерпевают радиоактивный распад, превращаясь в протон и электрон. Это напоминает о первоначальной гипотезе составной нейтральной частицы. Однако внутри стабильного ядра нейтроны связаны с протонами и самопроизвольно не распадаются.

Позитрон

Начиная с 30-х годов и вплоть до 50-х годов но вые частицы открывались главным образом в космических лучах. В 1932 г. в их составе А. Андерсоном была обнаружена первая античастица - позитрон (е+) - частица с массой электрона, но с положительным электрическим зарядом. Позитрон был первой открытой античастицей. Существование е+ непосредственно вытекало из релятивистской теории электрона, развитой П. Дираком (1928-31) незадолго до обнаружения позитрона. В 1936г. американские физики К. Андерсон и С. Неддермейер обнаружили при исследовании космических лучей мюоны (обоих знаков электрического заряда) - частицы с массой примерно в 200 масс электрона, а в остальном удивительно близкие по свойствам к е-, е+.

Позитроны (положительные электроны) в веществе не могут существовать, потому что при замедлении они аннигилируют, соединяясь с отрицательными электронами. В этом процессе, который можно рассматривать как обратный процесс рождения пар, положительный и отрицательный электроны исчезают, при этом образуются фотоны, которым передается их энергия. При аннигиляции электрона и позитрона в большинстве случаев образуются два фотона, значительно реже - один фотон. Однофотонная аннигиляция может произойти только в том случае, когда электрон сильно связан с ядром; участие ядра в этом случае необходимо для сохранения импульса. Двухфотонная аннигиляция, напротив, может происходить и со свободным электроном. Часто процесс аннигиляции происходит после практически полной остановки позитрона. В этом случае испускаются в противоположных направлениях два фотона с равными энергиями.

Позитрон был открыт Андерсоном при изучении космических лучей методом камеры Вильсона. На рисунке, который является репродукцией с полученной Андерсоном фотографии в камере Вильсона, видна положительная частица, входящая в свинцовую пластину толщиной 0,6 см с импульсом 6,3*107 эВ/с и выходящая из нее с импульсом 2,3*107 эВ/с. Можно установить верхний предел для массы этой частицы, допустив, что она теряет энергию только на столкновения. Этот предел составляет 20 me. На основании этой и других сходных фотографий Андерсон выдвинул гипотезу о существовании положительной частицы с массой, примерно равной массе обычного электрона. Это заключение скоро было подтверждено наблюдениями Блэккета и Оккиалини в камере Вильсона. Вскоре после этого Кюри и Жолио открыли, что позитроны образуются при конверсии гамма-лучей радиоактивных источников, а также испускаются искусственными радиоактивными изотопами. Так как фотон, будучи нейтральным, образует пару (позитрон и электрон), то из принципа сохранения электрического заряда следует, что по абсолютной величине заряд позитрона равен заряду электрона.

Первое количественное определение массы позитрона было проделано Тибо, который измерял отношение e/m методом трохоид и пришел к выводу, что массы позитрона и электрона отличаются не больше чем на 15%. Более поздние эксперименты Шписа и Цана, которые использовали масс-спектрографическую установку, показали, что массы электрона и позитрона совпадают с точностью до 2%. Еще позже Дюмонд и сотрудники измерили с большой точностью длину волны аннигиляционного излучения. С точностью до ошибок эксперимента (0,2%) они получили такое значение длины волны, которого следовало ожидать в предположении, что позитрон и электрон имеют равные массы.

Закон сохранения момента количества движения в применении к процессу рождения пар показывает, что позитроны обладают полуцелым спином и, следовательно, подчиняются статистике Ферми. Разумно предположить, что спин позитрона равен 1/2, как и спин электрона.

Пионы и мюоны. Открытие мезона

Открытие мезона, в отличие от открытия позитрона явилось не результатом единичного наблюдения, а скорее выводом из целой серии экспериментальных и теоретических исследований.

В 1932 году Росси, используя метод совпадений, предложенный Боте и Кольхерстером, показал, что известную часть наблюдаемого на уровне моря космического излучения составляют частицы, способные проникать через свинцовые пластины толщиной до 1 м. Вскоре после этого он также обратил внимание на существование в космических лучах двух различных компонент. Частицы одной компоненты (проникающая компонента) способны проходить через большие толщи вещества, причем степень поглощения их различными веществами приблизительно пропорциональна массе этих веществ. Частицы другой компоненты (ливнеобразующая компонента) быстро поглощаются, в особенности тяжелыми элементами; при этом образуется большое число вторичных частиц (ливни). Эксперименты по изучению прохождения частиц космических лучей через свинцовые пластины, проведенные с камерой Вильсона Андерсоном и Неддемейером, также показали, что существуют две различные компоненты космических лучей. Эти эксперименты показали, что, в то время как в среднем потеря энергии частиц космических лучей в свинце совпадала по порядку величин с теоретически вычисленной потерей на столкновения, некоторые из этих частиц испытывали гораздо большие потери.

В 1934 году Бете и Гайтлер опубликовали теорию радиационных потерь электронов и рождения пар фотонами. Свойства менее проникающей компоненты, наблюдавшейся Андерсоном и Неддемейером, находились в согласии со свойствами электронов, предсказанными теорией Бете и Гайтлера; при этом большие потери объяснялись радиационными процессами. Свойства ливнеобразующего излучения, обнаруженного Росси, также могли быть объяснены в предположении, что это излучение состоит из электронов и фотонов больших энергий. С другой стороны, признавая справедливость теории Бете и Гайтлера, приходилось делать вывод, что "проникающие" частицы в экспериментах Росси и менее поглощающиеся частицы в экспериментах Андерсона и Неддемейера отличаются от электронов. Пришлось предположить, что проникающие частицы тяжелее электронов, так как согласно теории потери энергии на излучение обратно пропорциональны квадрату массы.

В связи с этим обсуждалась возможность краха теории излучения при больших энергиях. В качестве альтернативы Вильямс в 1934 году высказал предположение, что проникающие частицы космических лучей, возможно, обладают массой протона. Одна из трудностей, связанных с этой гипотезой, заключалась в необходимости существования не только положительных, но и отрицательных протонов, потому что эксперименты с камерой Вильсона показали, что проникающие частицы космических лучей имеют заряды обоих знаков. Более того, на некоторых фотографиях, полученных Андерсоном и Неддемейером в камере Вильсона, можно было видеть частицы, которые не излучали подобно электронам, но, однако, были не такими тяжелыми, как протоны. Таким образом, к концу 1936 года стало почти очевидным, что в космических лучах имеются, кроме электронов, еще и частицы до тех пор неизвестного типа, предположительно частицы с массой, промежуточной между массой электрона и массой протона. Следует отметить также, что в 1935 году Юкава из чисто теоретических соображений предсказал существование подобных частиц.

Существование частиц с промежуточной массой было непосредственно доказано в 1937 году экспериментами Неддемейера и Андерсона, Стрита и Стивенсона.

Эксперименты Неддемейера и Андерсона явились продолжением (с улучшенной методикой) упоминавшихся выше исследований по потерям энергии частиц космических лучей. Они были проведены в камере Вильсона, помещенной в магнитное поле и разделенной на две половины платиновой пластиной толщиной 1 см. Потери импульса для отдельных частиц космических лучей определялись путем измерения кривизны следа до и после пластины.

Поглощающиеся частицы легко могут быть интерпретированы как электроны. Такая интерпретация подкрепляется тем, что поглощающиеся частицы в отличие от проникающих часто вызывают в платиновом поглотителе вторичные процессы и по большей части встречаются группами (по две и больше). Именно этого и следовало ожидать, так как многие из электронов, наблюдаемых при такой же геометрии эксперимента, что у Неддемейера и Андерсона, входят в состав ливней, образующихся в окружающем веществе. Что касается природы проникающих частиц, то здесь многое пояснили два следующих результата, полученных Неддемейером и Андерсоном.

1). Несмотря на то, что поглощающиеся частицы относительно чаще встречаются при малых значениях импульсов, а проникающие частицы наоборот (более часты при больших значениях импульсов), имеется интервал импульсов, в котором представлены и поглощающиеся и проникающие частицы. Таким образом, различие в поведении этих двух сортов частиц не может быть приписано различию в энергиях. Этот результат исключает возможность считать проникающие частицы электронами, объясняя их поведение несправедливостью теории излучения при больших энергиях.

2). Имеется некоторое число проникающих частиц с импульсами меньше 200 Мэв/с, которые производят не большую ионизацию, чем однозарядная частица вблизи минимума кривой ионизации. Это означает, что проникающие частицы космических лучей значительно легче, чем протоны, поскольку протон с импульсом меньше 200 Мэв/с производит удельную ионизацию, примерно в 10 раз превышающую минимальную.

Стрит и Стивенсон попытались непосредственно оценить массу частиц космических лучей путем одновременного измерения импульса и удельной ионизации. Они использовали камеру Вильсона, которая управлялась системой счетчиков Гейгера-Мюллера, включенной на антисовпадения. Этим достигался отбор частиц, близких к концу своего пробега. Камера помещалась в магнитное поле напряженностью 3500 гс; камера срабатывала с задержкой около 1 сек, что позволяло производить счет капелек. Среди большого числа фотографий Стрит и Стивенсон нашли одну, представлявшую чрезвычайный интерес.

На этой фотографии виден след частицы с импульсом 29 Мэв/с, ионизация которой примерно в шесть раз превышает минимальную. Эта частица обладает отрицательным зарядом, поскольку она движется вниз. Судя по импульсу и удельной ионизации, ее масса оказывается равной примерно 175 массам электрона; вероятная ошибка, составляющая 25%, обусловлена неточностью измерения удельной ионизации. Заметим, что электрон, обладающий импульсом 29 Мэв/с, имеет практически минимальную ионизацию. С другой стороны, частицы с таким импульсом и массой протона (либо движущийся вверх обычный протон, либо отрицательный протон, движущийся вниз) обладают удельной ионизацией, которая примерно в 200 раз превышает минимальную; кроме того, пробег такого протона в газе камеры должен быть меньше 1 см. В то же время след, о котором идет речь, ясно виден на протяжении 7 см, после чего он выходит из освещенного объема.

Описанные выше эксперименты, безусловно, доказали, что проникающие частицы действительно являются более тяжелыми, чем электроны, но более легкими, чем протоны. Кроме того, эксперимент Стрита и Стивенсона дал первую примерную оценку массы этой новой частицы, которую мы можем теперь назвать ее общепринятым именем - мезон.

Итак в 1936 г.А. Андерсон и С. Неддермейер открыли мюон (м - мезон). Эта частица отличается от электрона только своей массой, которая примерно в 200 раз больше электронной.

В 1947г. Пауэлл наблюдал в фотоэмульсиях следы заряженных частиц, которые были интерпретированы как мезоны Юкавы и названы р-мезонами или пионами. Продукты распада заряженных пионов, представляющие собой также заряженные частицы, были названы м-мезонами или мюонами. Именно отрицательные мюоны и наблюдались в опытах Конверси: в отличие от пионов мюоны, как и электроны, не взаимодействуют сильно с атомными ядрами.

Так как при распаде остановившихся пионов всегда образовывались мюоны строго определённой энергии, отсюда следовало, что при переходе р в м должна образовываться ещё одна нейтральная частица (масса её оказалась очень близкой к нулю). С другой стороны, эта частица практически не взаимодействует с веществом, поэтому был сделан вывод, что она не может быть фотоном. Таким образом, физики столкнулись с новой нейтральной частицей, масса которой равна нулю. Итак, был открыт заряженный мезон Юкавы, распадающийся на мюон и нейтрино. Время жизни р-мезона относительно этого распада оказалось равным 2?10 -8 с. Потом выяснилось, что и мюон нестабилен, что в результате его распада образуется электрон. Время жизни мюона оказалось порядка 10 -6 с. Так как электрон, образующийся при распаде мюона, не имеет строго определенной энергии, то был сделан вывод, что наряду с электроном при распаде мюона образуются два нейтрино. В 1947 также в космических лучах группой С. Пауэлла были открыты p+ и p--мезоны с массой в 274 электронные массы, играющие важную роль во взаимодействии протонов с нейтронами в ядрах. Существование подобных частиц было предположено Х. Юкавой в 1935.

Нейтрино

Открытие нейтрино - частицы, почти не взаимодействующей с веществом, ведёт своё начало от теоретической догадки В. Паули (1930), позволившей за счёт предположения о рождении такой частицы устранить трудности с законом сохранения энергии в процессах бета-распада радиоактивных ядер. Экспериментально существование нейтрино было подтверждено лишь в 1953 (Ф. Райнес и К. Коуэн, США).

При в-распаде ядер, как мы уже говорили, кроме электронов вылетают ещё нейтрино. Частица эта сначала была "введена" в физику теоретически. Именно существование нейтрино было постулировано Паули в 1929 году, за много лет до его экспериментального открытия (1956 год). Нейтрино нейтральная частица с нулевой (или ничтожно малой) массой понадобилась Паули для того, чтобы спасти закон сохранения энергии в процессе в-распада атомных ядер.

Первоначально Паули назвал гипотетическую нейтральную частицу, образующуюся при в-распаде ядер, нейтроном (это было до открытия Чедвика) и предположил, что она входит в состав ядра.

Насколько трудно было прийти к гипотезе нейтрино, образующихся в самом акте распада нейтрона, видно хотя бы из того, что всего за год до появления фундаментальной статьи Ферми о свойствах слабого взаимодействия исследователь, выступая с докладом о современном состоянии физики атомного ядра использовал термин "нейтрон" для обозначения двух частиц, которые называются сейчас нейтроном и нейтрино. "Например, согласно предложению Паули, - говорит Ферми, - было бы возможно вообразить, что внутри атомного ядра находятся нейтроны, которые испускались бы одновременно с в-частицами. Эти нейтроны могли бы проходить через большие толщи вещества, практически не теряя своей энергии, и поэтому были бы практически не наблюдаемы. Существование нейтрона, несомненно, могло бы просто объяснить некоторые пока непонятные вопросы, такие, как статистика атомных ядер, аномальные собственные моменты некоторых ядер, а также, быть может, природу проникающего излучения". В самом деле, когда речь идёт о частице, испускаемой с в-электронами и плохо поглощаемой веществом, необходимо иметь в виду нейтрино. Можно сделать вывод, что в 1932 году проблемы нейтрона и нейтрино были крайне запутаны. Понадобился год напряжённой работы теоретиков и экспериментаторов, чтобы разрешить как принципиальные, так и терминологические трудности.

"После открытия нейтрона, - говорил Паули, - на семинарах в Риме мою новую частицу, испускаемую при в-распаде, Ферми стал называть "нейтрино", чтобы отличить её от тяжёлого нейтрона. Это итальянское название стало общепринятым".

В 30-годы теория Ферми была обобщена на позитронный распад (Вик, 1934 год) и на переходы с изменением углового момента ядра (Гамов и Теллер, 1937 год).

"Судьбу" нейтрино можно сравнить с "судьбой" электрона. Обе частицы были вначале гипотетическими - электрон был введён, чтобы привести атомную структуру вещества в соответствие с законами электролиза, а нейтрино - для спасения закона сохранения энергии в процессе в-распада. И только значительно позже они были открыты как реально существующие.

В 1962 было выяснено, что существуют два разных нейтрино: электронное и мюонное. В 1964 в распадах нейтральных К-мезонов было обнаружено несохранение т. н. комбинированной чётности (введённой Ли Цзун-дао и Ян Чжэнь-нином и независимо Л.Д. Ландау в 1956), означающее необходимость пересмотра привычных взглядов на поведение физических процессов при операции отражения времени.

Открытие странных частиц

Конец 40-х - начало 50-х гг. ознаменовались открытием большой группы частиц с необычными свойствами, получивших название “странных". Первые частицы этой группы К+ - и К--мезоны, L-, S+ - , S - , X - гипероны были открыты в космических лучах, последующие открытия странных частиц были сделаны на ускорителях - установках, создающих интенсивные потоки быстрых протонов и электронов. При столкновении с веществом ускоренные протоны и электроны рождают новые элементарные частицы, которые и становятся предметом изучения.

В 1947 г. Батлер и Рочестер в камере Вильсона наблюдали две частицы, названные V-частицами. Наблюдалось два трека, как бы образующие латинскую букву V. Образование двух треков свидетельствовало о том, что частицы нестабильны и распадаются на другие, более лёгкие. Одна из V-частиц была нейтральной и распадалась на две заряженные частицы с противоположными зарядами. (Позже она была отождествлена с нейтральным К-мезоном, который распадается на положительный и отрицательный пионы). Другая была заряженной и распадалась на заряженную частицу с меньшей массой и нейтральную частицу. (Позже она была отождествлена с заряженным К+-мезоном, который распадается на заряженный и нейтральный пионы).

V-частицы допускают, на первый взгляд, и другую интерпретацию: их появление можно было бы истолковать не как распад частиц, а как процесс рассеяния. Действительно, процессы рассеяния заряженной частицы на ядре с образованием в конечном состоянии одной заряженной частицы, а также неупругого рассеяния нейтральной частицы на ядре с образованием двух заряженных частиц будут выглядеть в камере Вильсона так же, как и распад V-частиц. Но такая возможность легко исключалась на том основании, что процессы рассеивания более вероятны в более плотных средах. А V-события наблюдались не в свинце, который присутствовал в камере Вильсона, а непосредственно в самой камере, которая заполнена газом с меньшей плотностью (по сравнению с плотностью свинца).

Заметим, что если экспериментальное открытие р-мезона было в каком-то смысле "ожидаемым" в связи с необходимостью объяснить природу нуклонных взаимодействий, то открытие V-частиц, как и открытие мюона, оказалось полной неожиданностью.

Открытие V-частиц и определение их самых "элементарных" характеристик растянулось более чем на десятилетие. После первого наблюдения этих частиц в 1947г. Рочестер и Батлер продолжали свои опыты ещё два года, но им не удалось наблюдать ни одной частицы. И только после того как аппаратуру подняли высоко в горы, были снова обнаружены V-частицы, а также и открыты новые частицы.

Как выяснилось позднее, все эти наблюдения оказались наблюдениями различных распадов одной и той же частицы - К-мезона (заряженного или нейтрального).

"Поведение" V-частиц при рождении и последующем распаде привело к тому, что их стали называть странными.

Странные частицы в лаборатории впервые получены в 1954г. Фаулером, Шаттом, Торндайком и Вайтмором, которые, используя пучок ионов от Брукхейвенского космотрона с начальной энергией 1,5 ГэВ, наблюдали реакции ассоциативного образования странных частиц.

С начала 50-х гг. ускорители превратились в основной инструмент для исследования элементарных частиц. В 70-х гг. энергии частиц, разогнанных на ускорителях, составили десятки и сотни млрд. электрон-вольт (ГэВ). Стремление к увеличению энергий частиц обусловлено тем, что высокие энергии открывают возможность изучения строения материи на тем меньших расстояниях, чем выше энергия сталкивающихся частиц. Ускорители существенно увеличили темп получения новых данных и в короткий срок расширили и обогатили наше знание свойств микромира. Применение ускорителей для изучения странных частиц позволило более детально изучить их свойства, в частности особенности их распада, и вскоре привело к важному открытию: выяснению возможности изменения характеристик некоторых микропроцессов при операции зеркального отражения - т. н. нарушению пространств, чётности (1956). Ввод в строй протонных ускорителей с энергиями в миллиарды электрон-вольт позволил открыть тяжёлые античастицы: антипротон (1955), антинейтрон (1956), антисигма-гипероны (1960). В 1964 был открыт самый тяжёлый гиперон W - (с массой около двух масс протона).

Резонансы.

В 1960-х гг. на ускорителях было открыто большое число крайне неустойчивых (по сравнению с др. нестабильными элементарными частицами) частиц, получивших название “резонансов". Массы большинства резонансов превышают массу протона. Первый из них D1 (1232) был известен с 1953 г. Оказалось, что резонансы составляют основная часть элементарных частиц.

Сильное взаимодействие р-мезона и нуклона в состоянии с полным изотопическим спином 3/2 и моментом 3/2 приводит к появлению у нуклона возбуждённого состояния. Это состояние в течение очень короткого времени (порядка 10 -23 с) распадается на нуклон и р-мезон. Поскольку это состояние имеет вполне определённые квантовые числа, как и стабильные элементарные частицы, естественно было назвать его частицей. Чтобы подчеркнуть очень малое время жизни этого состояния, его и подобные короткоживущие состояния стали называть резонансными.

Нуклонный резонанс, открытый Ферми в 1952 г., позже стали называть Д 3/2 3/2 - изобарой (чтобы выделить тот факт, что спин и изотопический спин Д-изобары равны 3/2). Так как время жизни резонансов незначительна, их нельзя наблюдать непосредственно, аналогично тому, как наблюдают "обычные" протон, р-мезоны и мюоны (по их следам в трековых приборах). Резонансы обнаруживают по характерному поведению сечений рассеивания частиц, а также изучая свойства продуктов их распада. Большинство известных элементарных частиц относится именно к группе резонансов.

Открытие Д-резонанса имело важнейшее значение для физики элементарных частиц.

Заметим, что возбуждённые состояния или резонансы не являются абсолютно новыми объектами физики. Ранее они были известны в атомной и ядерной физике, где их существование связано с составной природой атома (образованного из ядра и электронов) и ядра (образованного из протонов и нейтронов). Что касается свойств атомных состояний, то они определяются только электромагнитным взаимодействием. Малые вероятности их распада связаны с малостью константы электромагнитного взаимодействия.

Возбуждённые состояния существуют не только у нуклона (в этом случае говорят о его изобарных состояниях), но и у р-мезона (в этом случае говорят о мезонных резонансах).

"Причина появления резонансов в сильных взаимодействиях непонятна - пишет Фейнман, - сначала теоретики и не предполагали, что в теории поля с большой константой взаимодействия существуют резонансы. Позднее они осознали, что если константа взаимодействия достаточно велика, то возникают изобарные состояния. Однако истинное значение факта существования резонансов для фундаментальной теории остаётся неясной".

Подобные документы

    Предпосылки 17-века. История и понятие техники. Некоторые открытия, свидетельствующие о научно-технической революции (НТР). Новые явления в культуре 19-20 вв. Глобальные проблемы 20-21 века. Характеристика научно-технической революции, значение и понятие.

    реферат , добавлен 22.06.2009

    Основные понятия и предмет социологии, основные вехи ее развития. Первые социологи античности. Классическая западная социология. Особенности учений Конта и Дюркгейма. История развития социологии в России. Политическое лидерство и его основные типы.

    контрольная работа , добавлен 27.07.2011

    Понятие неформалов и их основные признаки. История неформального молодежного движения, причины его возникновения. Основные функции самодеятельных объединений. Классификация неформалов, их деятельность, социальная направленность, взгляды, задачи и цели.

    реферат , добавлен 16.08.2011

    История неформального движения, причины возникновения. Неформальные движения: общая характеристика и основные тенденции развития. Неформалы художественной направленности. Сфера экстернальной культуры. Классификация и основные признаки неформалов.

    реферат , добавлен 22.01.2011

    Специфика и история развития российских некоммерческих организаций. Формирование российской системы законодательства о некоммерческих организациях. Классификация НКО, их цели и принципы деятельности. Принцип общественной пользы. Типология российских НКО.

    контрольная работа , добавлен 27.12.2016

    Сущность и основные причины самоубийства, оценка распространенности данного негативного явления в современном мире. История становления и развития концепции самоубийства в Японии, его морально-этическое, культурологическое обоснование. Феномен камикадзе.

    курсовая работа , добавлен 29.12.2013

    Что такое способности и их классификация. Уровни развития способностей: способность, одаренность, талант, гениальность; их происхождение: генетическое и приобретенное. Условия для развития способностей. Влияние способностей на выбор профессии.

    научная работа , добавлен 25.02.2009

    История "советской" игрушки. Социологический аспект рассмотрения игрушек. Значение современных игрушек для общества. нужно следить за тем, во что и как играет ваш ребенок. Будьте примером для своего чада. Растите с ним.

    курсовая работа , добавлен 23.06.2006

    Самодеятельные объединения, их взаимосвязь с государственными и общественными институтами. История и причины возникновения неформального движения. Понятие, задачи, цели, экстернальная культура, символика, основные признаки и классификация неформалов.

    реферат , добавлен 04.03.2013

    Самоубийство как социальное явление, определение его основные причин, степень распространения в современном обществе, история и этапы исследований. Проблема самоубийства по Эмилю Дюркгейму, классификация их видов. Применение принципов "социологизма".


III Микромир

Движение и физическое взаимодействие.

Основополагающие принципы современной физики и квантовой механики: принцип симметрии, принцип дополнительности и соотношения неопределенностей, принцип суперпозиции, принцип соответствия. «Апофатизм» в описании структуры и механики микромира.

Богословское осмысление тенденций к построению «Теории Всего».

Литература для изучения:

1. Барбур И. Религия и наука: история и современность. – М.: Библейско-Богословский институт св. ап. Андрея, 2001. – C. 199-216; 230-238; 253-256. (Электронный ресурс: http://www.mpda.ru/publ/text/59427.html)

2. Горелов А.А. Концепции современного естествознания. – М.: Высшее образование, 2006. – C. 110-120.

3. Грин Б. Элегантная вселенная. Суперструны, скрытые размерности и поиски окончательной теории: Пер. с англ. – М.: КомКнига, 2007.

4. Грин Б. Ткань космоса: Пространство, время и текстура реальности: Пер. с англ. – М.: URSS, 2009.

5. Осипов А.И. Путь разума в поисках истины. – СПб.: Сатис, 2007. - С. 100-110.

6. Садохин А.П. Концепции современного естествознания: курс лекций. – М.: Омега-Л, 2006. – С. 64-78.

7. Фейнман Р ., Характер физических законов. – М.: Наука, 1987. (Электронный ресурс: http://vivovoco.rsl.ru/VV/Q_PROJECT/FEYNMAN/CONT.HTM)

История открытия элементарных частиц: атомы, адроны, кварки, струны.

Согласно древнегреческим философам Левкиппу (Λεύκιππος, V век до р. Х.) и Демокриту (Δημόκριτος; ок. 460 до н. э. - ок. 370 до р. Х.) – основоположникам атомизма, в основе мира лежат атомы - мельчайшие неделимые частицы, которые сцепляются и образуют все живое и неживое.

К XVIII в. стало понятно, что атом является элементарной химически неделимой частицей, в то время как молекула , - элементарная частица вещества, сохраняющая его свойства, - состоит из определенных «сортов» атомов. Атомы одного вида получили названия элементов. В 1869 г. Дмитрий Иванович Менделеев создал свою Периодическую систему, включающую 64 элемента (на октябрь 2009 года известно 117 химических элементов с порядковыми номерами с 1 по 116 и 118, из них 94 обнаружены в природе (некоторые - лишь в следовых количествах), остальные 23 получены искусственно в результате ядерных реакций).

Однако уже в 1910-х гг. физики приходят к выводу о делимости атома (ἄτομος - неделимый!). Создаются ряд моделей атома, из которых признание завоевала «планетарная» модель атома с внесенными поправками-постулатами (Э. Резерфорд, Ernest Rutherford; 1871 – 1937, Н. Бор, Niels Bohr; 1885 - 1962).

Планетарная модель атома весьма скоро была признана непригодной из-за принципиального противоречия с фактом линейчатого характера спектра излучения: электрон, вращающийся вокруг положительно заряженного ядра, непрерывно излучает, т.е., теряет энергию и скоро неизбежно должен «падать» на ядро. Положение исправили постулаты Бора, в которых электрон не мог непрерывно терять энергию, излучение происходит в результате скачкообразного перехода на нижележащую орбиту. Создание квантовой теории атома в 20-х годах показало, что от постулатов Бора необходимо отказаться. Представление о ядре атома в то же время оставалось все таким же, как после опытов Резерфорда по рассеиванию альфа-частиц в начале ХХ в.: ядро состоит из протонов и некоторого, меньшего числа электронов. Нейтрон был открыт английским физиком Дж. Чедвиком (James Chadwick; 1891 - 1974) в 1932 году. Тут наступил следующий акт драмы. Считалось, что электрон, который вылетает из ядра при бета-распаде, - это один из электронов, которые находились в ядре. Но теперь уже было известно, что ядро состоит из протонов и нейтронов. Откуда же берется электрон? Выдающийся итальянский физик Э. Ферми (Enrico Fermi; 1901 - 1954) выдвинул парадоксальную гипотезу. Электронов в ядре нет, при распаде происходит рождение электрона, а нейтрон превращается в протон. Такое решение вопроса казалось настолько неприемлемым, что солидный журнал Nature отказался опубликовать статью Ферми на эту тему. Это первый прецедент рождения частицы из энергии. Цепочка странных идей не этом не оборвалась. Японский физик-теоретик Хидэки Юкава (1907 - 1981) построил простую физическую модель, в которой в результате обмена нуклонов частицей с ненулевой массой возникает сила, удерживающая нуклоны в ядре. Юкава также рассчитал массу этой «виртуальной» частицы. Однако по понятиям физиков того времени частицу можно признать существующей, если она обнаружена также в свободном состоянии. Были предприняты поиски частицы Юкавы в космических лучах, и, казалось бы, частица была найдена. Однако найденная частица имела меньшую массу, чем частица Юкавы. Кроме того, появились данные, что найденная частица подобна электрону, но тяжелее. В дальнейшем частица была названа мю-мезоном (греч. μέσος - средний). Поиски продолжались, и в сороковых годах была найдена другая полностью подходящая частица (ее назвали пи-мезоном). В 1948 году Юкава получил Нобелевскую премию.

Таким образом, физики осознали возможность существования частиц в виртуальном состоянии, т.е., при расщеплении ядра частица не обнаруживается, но реально обеспечивает взаимное притяжение нуклонов в ядре. Оказалось, что неделимы не только атомы, но и «кирпичики», слагающие их ядра, - протоны и нейтроны.

В 1960-х гг. было доказано, что и эти частицы состоят из еще более маленьких частиц с дробным положительным или отрицательным зарядом (1 /3 е или 2/3 е ) - кварков . Гипотеза о том, что «элементарные» частицы построены из специфических субъединиц, была впервые выдвинута американскими физиками М. Гелл-Манном (Murray Gell-Mann; род. в 1929 г.) и Дж. Цвейгом (род. в 1937 г.) в 1964 году. В период с 1969 по 1994 гг. удалось экспериментально обосновать, по крайней мере косвенно, возможность существования кварков.

Слово «кварк» было заимствовано Гелл-Манном из художественного романа Дж. Джойса «Поминки по Финнегану», где в одном из эпизодов звучит фраза «Three quarks for Muster Mark!» (обычно переводится как «Три кварка для м. Марка!»). Само слово «quark» в этой фразе предположительно является звукоподражанием крику морских птиц или означает на немецком сленге что-то в роде «чепуха».

Кварки не существуют автономно, «сами по себе», а только в системе – «элементарной» частице (протон, нейтрон и т. д.), и описываются такими специфическими параметрами как «аромат» (6 видов, см. схему) и «цвет» («красный, «синий», «зеленый», «антикрасный», «антисиний», «антизеленый»). Суммарный заряд 2-х или 3-х кварков, объединенных в систему должен быть целочисленным (0 или 1). Сумма цветов также равна «нулю» (белый).

Кварки «сцепляются» между собой благодаря сильному физическому взаимодействию. Высказано предположение, что кварки участвуют также в электромагнитных и слабых взаимодействиях. Причем в первом случае кварки не меняют свой цвет и аромат, а во втором – меняют аромат, сохраняя цвет.

Всего же на протяжении ХХ века было обнаружено около 400 элементарных частиц. Одни из них, как было сказано выше, имеют определенную структуру (протон, нейтрон), другие являются бесструктурными (электрон, нейтри­но, фотон, кварк).

Элементарные частицы обладают довольно большим количеством параметров, поэтому существует несколько стандартных типов их классификаций, приводимые ниже.

1. По массе покоя частицы (масса покоя, определяемая по отношению к массе покоя электрона, считающегося самой лег­кой из всех частиц, имеющих массу):

фотоны (φῶς, φωτός - свет) - частицы, не имеющие массы покоя и движущие­ся со скоростью света;

лептоны (λεπτός - легкий) - легкие частицы (элект­рон и разные виды нейтрино);

мезоны (μέσος - средний, промежуточный) - сред­ние частицы с массой от одной до тысячи масс электрона;

барионы (βαρύς - тяжелый) - тяжелые частицы с мас­сой более тысячи масс электрона (протоны, нейтроны, ги­пероны, многие резонансы).

2. По электрическому заряду, всегда кратному фундаментальной единице заряда - заряду электрона (-1), который рассматрива­ется в качестве единицы отсчета зарядов. Заряд частиц может быть отрицательным, положительным или нулевым. Как было сказано выше, для кварков характерен дробный электрическим заряд.

3. По типу физического взаимодействия (см. ниже), в котором принимают участие те или иные элементарные частицы. По данному показателю их можно раз­делить на три группы:

· адроны (ἁδρός - тяжелый, крупный, сильный), участвующие в электромагнитном, сильном и слабом взаимодействиях (мезоны и барионы);

· лептоны, участвующие только в электромагнитном и сла­бом взаимодействиях;

· частицы - переносчики взаимодействий (фотоны - переносчики электромагнитного взаимодействия, глюоны - пе­реносчики сильного взаимодействия, тяжелые векторные бозо­ны - переносчики слабого взаимодействия, гипотетические гравитоны - частицы, обеспечивающие гравитационное взаимодействие).

4. По времени жизни частиц:

· стабильные «долгожители» (фотон, нейтрино, нейтрон, протон, электрон; время жизни –до бесконечности);

· квазистабильные (резонансы) ; время существования составляет 10 -24 -10 -26 с.; распадаются в результате электромагнитного и слабого взаимодействия;

· нестабильные (большинство элементарных частиц; время их жизни - 10 -10 - 10 -24 с).

5. По спину (от англ. spin – веретено, вертеть(ся)) - собственному моменту количества движения (импульса) частицы, ее внутренней степени свободы, обеспечивающей дополнительное физическое состояние. В отличие от классического момента количества движения, который может принимать любые значения, спин принимает только пять воз­можных значений. Он может равняться целому (0, 1, 2) или по­луцелому (1/2 (электрон, протон, нейтрон), 3/2 (омега-гиперон)) числу. Частицы с полуцелым спином называются фермионами , а с целым - бозонами (фотоны со спином 1; мезоны - 0; грави­тоны - 2).

Каждая частица имеет свою античастицу (вещество и антивещество). При их встрече происходит взаимное уничтожение (аннигиляция) и выделяется большое количество энергии.

Найденные закономерности в свойствах элементарных частиц и подразделение их на «семейства» или «поколения» позволили поставить вопрос о наличии внутренних глубинных закономерностях, определяющих их свойства (см. схему).

Существуют теории, объясняющие структуру микромира (например, Стандартная модель). В 1970-х гг. появилась весьма оригинальная теория струн (Джон Хенри Шварц, Schwartz, р. 1941; Г. Венециано,Gabriele Veneziano; род. 1942; М. Грин, Michael Greene, и др.). Теория струн - направление математической физики, изучающее не точечные частицы, как многие разделы физики, а одномерные протяженные геометрические объекты - квантовые струны . Теория основана на гипотезе, предполагающей, что все фундаментальные частицы и их взаимодействия возникают в результате колебаний (возбужденных состояний) и взаимодействий ультрамикроскопических энергетических квантовых струн на масштабах порядка т.н. планковской длины 10 −33 м, подобно тому, как звуки разной частоты порождаются вибрацией струны музыкального инструмента. Более того, само пространство и время рассматриваются как производные определенных модусов колебаний струн. Вселенная, состоящая из бесчисленного количества этих колеблющихся струн, подобна звучащей «космической симфонии». Несмотря на разрешение целого ряда существующих проблем, теория струн остается в настоящее время в основном математической абстракцией, требующей экспериментального подтверждения.

Ставя физические опыты, ученые фактически задают природе вопросы. Если опыт поставлен грамотно, если все технические тонкости учтены и если результат его правильно интерпретирован - ученые получают ответ природы, новое знание о физическом мире.

Физики задают природе вопросы и об устройстве микромира. Для общения с природой на эту тему был найден удобный язык, этакая «азбука Морзе» для разговоров о микромире . «Буквами» этого языка служат разнообразные элементарные частицы и их характеристики, «словами» - комбинации элементарных частиц, которые рождаются в каком-то столкновении на коллайдере и затем регистрируются в детекторе. А последовательность из большого числа одинаковых столкновений с самыми разными результатами - это целые «фразы», которыми природа рассказывает нам о каком-то своем свойстве.

Задача физика-экспериментатора - правильно распознать все буквы и слова, найти в этом потоке информации от природы фразы и правильно понять их смысл.

Этапы изучения элементарных частиц

То же самое можно выразить и менее поэтическим языком. Физикам требуется:

  • зарегистрировать частицы, рождающиеся в столкновениях, и аккуратно измерить их характеристики;
  • понять, как частицы комбинируются друг с другом: какая вместе с какой рождается, какая на какую распадается, какая с какой взаимодействует;
  • повторить такое столкновение много раз, набрать большой объем данных и, анализируя его статистическими методами, извлечь закономерности;
  • проверить, согласуются ли эти закономерности друг с другом и с теоретическими предсказаниями.

Все эти этапы вместе и составляют задачу изучения элементарных частиц. Перечислим некоторые тонкости этих этапов.

Регистрация событий

Элементарные частицы, родившись в столкновении внутри коллайдера, разлетаются прочь с околосветовой скоростью. Если на пути частицы поставить какой-нибудь простой датчик, то он, может быть, зарегистрирует пролет частицы, но не расскажет ни о ее сорте, ни о ее заряде, энергии, массе, времени жизни и прочих характеристиках. Всю эту информацию приходится «выцарапывать» с помощью сложных многослойных детекторов элементарных частиц .

Многослойность нужна потому, что каждый слой оптимизирован для измерения какой-то одной характеристики. Внутренние части детектора очень точно измеряют траектории частиц и почти не мешают их движению. Следующие слои, напротив, стараются полностью поглотить интенсивно взаимодействующие частицы, чтобы измерить их энергию. А на самой периферии детектора установлены датчики, которые отслеживают плохо взаимодействующие частицы (в основном, мюоны).

В каждом слое используются свои инженерные решения, которые зачастую были придуманы специально для этого детектора. Так что современный детектор вовсе не собирается из каких-то стандартных готовых блоков, а изобретается почти с нуля. Поэтому все детекторы, установленные на Большом адронном коллайдере, непохожи друг на друга и имеют свои изюминки. При этом многие из них специально оптимизированы для какого-то определенного класса «вопросов природе», и лишь два самых крупных детектора - CMS и ATLAS - являются многоцелевыми.

Сразу после того, как столкновение зарегистрировано, оно моментально - за доли микросекунды! - оценивается на предмет его «научной интересности». Это решение принимается электроникой, установленной рядом с детектором; эта совокупность электроники называется триггером . Если в том «снимке события», который запечатлел детектор, прослеживаются намеки на частицы большой энергии или прочие интересные объекты, триггер разрешает полностью оцифровать событие и пропускает его дальше. Оно затем поступает в вычислительные центры и записывается для будущего анализа.

Анализ статистики

Анализ событий начинается не сразу, а после того, как накопится заметное число событий. В рамках крупной коллаборации выделяется несколько десятков небольших групп, каждая из которых в течение месяцев или даже лет работает над определенным типом анализа. Это может быть поиск хиггсовского бозона, измерение массы топ-кварка, изучение распадов B-мезонов, и многое другое.

Работа этой группы, в общих чертах, выглядит так. Исследователи изучают ранее накопленный опыт изучения таких частиц и вырабатывают критерии поиска (какие события отбирать, а какие игнорировать, на какие характеристики частиц обращать внимание прежде всего, какого сорта проверки полезно делать). Они (а точнее, написанные ими программы) перебирают всю накопленную статистику и отбирают события, удовлетворяющие их критериям. Затем с этой выборкой идет длительная работа: физики классифицируют события, строят распределения, выделяют области, наиболее чувствительные к искомому эффекту, и т. д.

Параллельно они проводят моделирование с помощью специально созданных программных пакетов, в которых заложена та или иная теоретическая модель, либо Стандартная модель , либо какой-то вариант Новой физики . Эти программы генерируют псевдоданные , то есть они как бы эмулируют работу коллайдера в рамках какого-то теоретического предположения. Эти псевдоданные тоже могут подвергаться тем же самым критериям отбора, которые применяются и к настоящим данным коллайдера. Экспериментаторы сравнивают одни с другими, и это позволяет им не только сказать что-то о результатах измерений, но и еще больше оптимизировать анализ данных. При этом сравнение и оптимизация делаются так, чтобы не допустить предвзятость самих исследователей (см. пример в новости Что означает «слепой анализ» при поиске новых частиц?)

Разумеется, вся эта работа очень сложна и содержит множество подводных камней. Результат, который получают экспериментаторы, вовсе не идеально точен, а содержит разнообразные погрешности самого разного происхождения. Грамотная оценка всех источников погрешностей - один из ключевых этапов работы исследовательской группы.

После того как результат получен и перепроверен внутри маленькой группы, пишется статья с изложением результата, и она выносится на обсуждение всей коллаборации. Проходит несколько этапов обсуждения работы, и после того, как коллаборация дает добро, статья публикуется. Именно в этот момент «внешний мир» узнает, что такая-то коллаборация провела такой-то анализ и опубликовала статью.

Желающим ближе познакомиться со всеми этими этапами работы на одном конкретном примере можно порекомендовать большой популярный рассказ Анатомия одной новости, или Как на самом деле физики изучают элементарные частицы .

В физике элементарных частиц принято все свежие статьи выкладывать в полностью открытый архив е-принтов arxiv.org (так и читается, «архив»). Одновременно статья направляется для публикации в научный журнал, и после прохождения этапа рецензирования статья появляется в печати. Стоит подчеркнуть, что политика ЦЕРНа такова, что абсолютно все статьи с результатами Большого адронного коллайдера находятся в свободном доступе - не важно, в каком журнале они опубликованы. Так что с результатами LHC во всех деталях может познакомиться любой желающий.

Введение

1. Открытие элементарных частиц

2. Теории элементарных частиц

2.1. Квантовая электродинамика (КЭД)

2.2. Теория кварков

2.3. Теория электрослабого взаимодействия

2.4. Квантовая хромодинамика

Заключение

Литература

Введение.

В середине и второй половине ХХ века в тех разделах физики, которые заняты изучением фундаментальной структуры материи, были получены поистине удивительные результаты. Прежде всего это проявилось в открытии целого множества новых субатомных частиц. Их обычно называют элементарными частицами, но далеко не все из них действительно элементарны. Многие из них в свою очередь состоят из еще более элементарных частичек.

Мир субатомных частиц поистине многообразен. К ним относятся протоны и нейтроны, составляющие атомные ядра, а также обращающиеся вокруг ядер электроны. Но есть и такие частицы, которые в окружающем нас веществе практически не встречаются. Время их жизни чрезвычайно мало, оно составляет мельчайшие доли секунды. По истечении этого чрезвычайно короткого времени они распадаются на обычные частицы. Таких нестабильных короткоживущих частиц поразительно много: их известно уже несколько сотен.

В 60-70-е годы физики были совершенно сбиты с толку многочисленностью, разнообразием и необычностью вновь открытых субатомных частиц. Казалось, им не будет конца. Совершенно непонятно, для чего столько частиц. Являются ли эти элементарные частицы хаотическими и случайными осколками материи? Или, возможно, они таят в себе ключ к познанию структуры Вселенной? Развитие физики в последующие десятилетия показало, что в существовании такой структуры нет никаких сомнений. В конце ХХ в. физика начинает понимать, каково значение каждой из элементарных частиц.

Миру субатомных частиц присущ глубокий и рациональный порядок. В основе этого порядка - фундаментальные физические взаимодействия.

1. Открытие элементарных частиц.

Открытие элементарных часиц явилось закономерным результатом общих успехов в изучении строения вещества, достигнутых физикой в конце 19 в. Оно было подготовлено всесторонними исследованиями оптических спектров атомов, изучением электрических явлений в жидкостях и газах, открытием фотоэлектричества, рентгеновских лучей, естественной радиоактивности, свидетельствовавших о существовании сложной структуры материи.

Исторически первой открытой элементарной частицей был электрон - носитель отрицательного элементарного электрического заряда в атомах. В 1897 Дж. Дж. Томсон установил, что т. н. катодные лучи образованы потоком мельчайших частиц, которые были названы электронами. В 1911 Э. Резерфорд, пропуская альфа-частицы от естественного радиоактивного источника через тонкие фольги различных веществ, выяснил, что положительный заряд в атомах сосредоточен в компактных образованиях - ядрах, а в 1919 обнаружил среди частиц, выбитых из атомных ядер, протоны - частицы с единичным положительным зарядом и массой, в 1840 раз превышающей массу электрона. Другая частица, входящая в состав ядра, - нейтрон - была открыта в 1932 Дж. Чедвиком при исследованиях взаимодействия a-частиц с бериллием. Нейтрон имеет массу, близкую к массе протона, но не обладает электрическим зарядом. Открытием нейтрона завершилось выявление частиц - структурных элементов атомов и их ядер.

Вывод о существовании частицы электромагнитного поля - фотона - берёт своё начало с работы М. Планка (1900). Предположив, что энергия электромагнитного излучения абсолютно чёрного тела квантованна, Планк получил правильную формулу для спектра излучения. Развивая идею Планка, А. Эйнштейн (1905) постулировал, что электромагнитное излучение (свет) в действительности является потоком отдельных квантов (фотонов), и на этой основе объяснил закономерности фотоэффекта. Прямые экспериментальные доказательства существования фотона были даны Р. Милликеном (1912- 1915) и А. Комптоном (1922).

Открытие нейтрино - частицы, почти не взаимодействующей с веществом, ведёт своё начало от теоретической догадки В. Паули (1930), позволившей за счёт предположения о рождении такой частицы устранить трудности с законом сохранения энергии в процессах бета-распада радиоактивных ядер. Экспериментально существование нейтрино было подтверждено лишь в 1953 (Ф. Райнес и К Коуэн, США).

С 30-х и до начала 50-х гг. изучение элементарных частиц было тесно связано с исследованием космических лучей. В 1932 в составе космических лучей К. Андерсоном был обнаружен позитрон (е+) - частица с массой электрона, но с положительным электрическим зарядом. Позитрон был первой открытой античастицей. Существование е+ непосредственно вытекало из релятивистской теории электрона, развитой П. Дираком (1928-31) незадолго до обнаружения позитрона. В 1936 американские физики К. Андерсон и С. Неддермейер обнаружили при исследовании осмических лучей мюоны (обоих знаков электрического заряда) - частицы с массой примерно в 200 масс электрона, а в остальном удивительно близкие по свойствам к е-, е+.

В 1947 также в космических лучах группой С. Пауэлла были открыты p+ и p--мезоны с массой в 274 электронные массы, играющие важную роль во взаимодействии протонов с нейтронами в ядрах. Существование подобных частиц было предположено Х. Юкавой в 1935.

Конец 40-х - начало 50-х гг. ознаменовались открытием большой группы частиц с необычными свойствами, получивших название “странных”. Первые частицы этой группы К+- и К--мезоны, L-, S+ -, S- -, X- -гипероны были открыты в космических лучах, последующие открытия странных частиц были сделаны на ускорителях - установках, создающих интенсивные потоки быстрых протонов и электронов. При столкновении с веществом ускоренные протоны и электроны рождают новые элементарные частицы, которые и становятся предметом изучения.

С начала 50-х гг. ускорители превратились в основной инструмент для исследования элементарных частиц. В 70-х гг. энергии частиц, разогнанных на ускорителях, составили десятки и сотни млрд. электронвольт (Гэв). Стремление к увеличению энергий частиц обусловлено тем, что высокие энергии открывают возможность изучения строения материи на тем меньших расстояниях, чем выше энергия сталкивающихся частиц. Ускорители существенно увеличили темп получения новых данных и в короткий срок расширили и обогатили наше знание свойств микромира. Применение ускорителей для изучения странных частиц позволило более детально изучить их свойства, в частности особенности их распада, и вскоре привело к важному открытию: выяснению возможности изменения характеристик некоторых микропроцессов при операции зеркального отражения - т. н. нарушению пространств, чётности (1956). Ввод в строй протонных ускорителей с энергиями в миллиарды электронвольт позволил открыть тяжёлые античастицы: антипротон (1955), антинейтрон (1956), антисигма-гипероны (1960). В 1964 был открыт самый тяжёлый гиперон W- (с массой около двух масс протона). В 1960-х гг. на ускорителях было открыто большое число крайне неустойчивых (по сравнению с др. нестабильными элементарными частицами) частиц, получивших название “резонансов”. Массы большинства резонансов превышают массу протона. Первый из них D1 (1232) был известен с 1953. Оказалось, что резонансы составляют основная часть элементарных частиц.

В 1962 было выяснено, что существуют два разных нейтрино: электронное и мюонное. В 1964 в распадах нейтральных К-мезонов было обнаружено несохранение т. н. комбинированной чётности (введённой Ли Цзун-дао и Ян Чжэнь-нином и независимо Л. Д. Ландау в 1956), означающее необходимость пересмотра привычных взглядов на поведение физических процессов при операции отражения времени.

В 1974 были обнаружены массивные (в 3-4 протонные массы) и в то же время относительно устойчивые y-частицы, с временем жизни, необычно большим для резонансов. Они оказались тесно связанными с новым семейством элементарных частиц - “очарованных”, первые представители которого (D0, D+, Lс) были открыты в 1976. В 1975 были получены первые сведения о существовании тяжёлого аналога электрона и мюона (тяжёлого лептона t). В 1977 были открыты Ў-частицы с массой порядка десятка протонных масс.

Таким образом, за годы, прошедшие после открытия электрона, было выявлено огромное число разнообразных микрочастиц материи. Мир элементарных частиц оказался достаточно сложно устроенным. Неожиданными во многих отношениях оказались свойства обнаруженных элементарных частиц. Для их описания, помимо характеристик, заимствованных из классической физики, таких, как электрический заряд, масса, момент количества движения, потребовалось ввести много новых специальных характеристик, в частности для описания странных элементарных частиц - странность (К. Нишиджима, М. Гелл-Ман, 1953), “очарованных” элементарных частиц - “очарование” (американские физики Дж. Бьёркен, Ш. Глэшоу, 1964); уже названия приведённых характеристик отражают необычность описываемых ими свойств элементарных частиц.

Изучение внутреннего строения материи и свойств элементарных частиц с первых своих шагов сопровождалось радикальным пересмотром многих устоявшихся понятий и представлений. Закономерности, управляющие поведением материи в малом, оказались настолько отличными от закономерностей классической механики и электродинамики, что потребовали для своего описания совершенно новых теоретических построений.


И искомыми величинами. Последовательность действий, которые надо выполнить, чтобы от исходных данных перейти к искомым величинам, называют алгоритмом. 2. Историческое развитие моделей элементарных частиц 2.1 Три этапа в развитии физики элементарных частиц Этап первый. От электрона до позитрона: 1897-1932гг (Элементарные частицы - "атомы Демокрита" на более глубоком уровне) Когда греческий...

Ограниченного числа явлений: механика Ньютона, или далеко не оптимальным или совершенным творением техники: лайнер "Титаник", самолеты Ту-144, "Конкорд", Чернобыльская АЭС, космические корабли серии " Шаттл" и многое-многое другое. 3. Развитие системного подхода в науке 3.1 Ранние попытки систематизации физических знаний Первой действительно успешной попыткой систематизации знаний о...