Эволюция представлений о строении атома химия. Атом – сложная частица. Почему ядро атома не распадается

Открытие сложного строения атома – важнейший этап становления современной физики. В процессе создания количественной теории строения атома, позволившей объяснить атомные системы, были сформированы новые представления о свойствах микрочастиц, которые описываются квантовой механикой.
Представление об атомах как неделимых мельчайших частицах веществ, как уже отмечалось выше, возникло еще в античные времена (Демокрит, Эпикур, Лукреций). В средние века учение об атомах, будучи материалистическим, не получило признания. К началу XVIII в. атомистическая теория приобретает все большую популярность. К этому времени работами французского химика А. Лавуазье (1743–1794), великого русского ученого М.В. Ломоносова и английского химика и физика Д. Дальтона (1766–1844) была доказана реальность существования атомов. Однако в это время вопрос о внутреннем строении атомов даже не возникал, так как атомы считались неделимыми.
Большую роль в развитии атомистической теории сыграл выдающийся русский химик Д.И. Менделеев, разработавший в 1869 г. периодическую систему элементов, в которой впервые на научной основе был поставлен вопрос о единой природе атомов. Во второй половине XIX в. было экспериментально доказано, что электрон является одной из основных частей любого вещества. Эти выводы, а также многочисленные экспериментальные данные привели к тому, что в начале XX в. серьезно встал вопрос о строении атома.
Существование закономерной связи между всеми химическими элементами, ярко выраженное в периодической системе Менделеева, наталкивает на мысль о том, что в основе строения всех атомов лежит общее свойство: все они находятся в близком родстве друг с другом.
Однако до конца XIX в. в химии господствовало метафизическое убеждение, что атом есть наименьшая частица простого вещества, последний предел делимости материи. При всех химических превращениях разрушаются и вновь создаются только молекулы, атомы же остаются неизменными и не могут дробиться на более мелкие части.
Различные предположения о строении атома долгое время не подтверждались какими-либо экспериментальными данными. Лишь в конце XIX в. были сделаны открытия, показавшие сложность строения атома и возможность превращения при определенных условиях одних атомов в другие. На основе этих открытий начало быстро развиваться учение о строении атома.
Первые косвенные подтверждения о сложной структуре атомов были получены при изучении катодных лучей, возникающих при электрическом разряде в сильно разреженных газах. Изучение свойств этих лучей привело к заключению, что они представляют собой поток мельчайших частиц, несущих отрицательный электрический заряд и летящих со скоростью, близкой к скорости света. Особыми приемами удалось определить массу катодных частиц и величину их заряда, выяснить, что они не зависят ни от природы газа, остающегося в трубке, ни от вещества, из которого сделаны электроды, ни от прочих условий опыта. Кроме того, катодные частицы известны только в заряженном состоянии и не могут быть лишены своих зарядов и превращены в электронейтральные частицы: электрический заряд составляет сущность их природы. Эти частицы, получившие название электронов , были открыты в 1897 г. английским физиком Дж. Томсоном.
Изучение строения атома практически началось в 1897–1898 гг., после того как была окончательно установлена природа катодных лучей как потока электронов и были определены величина заряда и масса электрона. Томсон предложил первую модель атома , представив атом как сгусток материи, обладающий положительным электрическим зарядом, в который вкраплено столько электронов, что превращает его в электрически нейтральное образование. В этой модели предполагалось, что под влиянием внешних воздействий электроны могли совершать колебания, т. е. двигаться ускоренно. Казалось бы, это позволяло ответить на вопросы об излучении света атомами вещества и гамма-лучей атомами радиоактивных веществ.
Положительно заряженных частиц внутри атома модель атома Томсона не предполагала. Но как же тогда объяснить испускание положительно заряженных альфа-частиц радиоактивными веществами? Модель атома Томсона не давала ответа и на некоторые другие вопросы.
В 1911 г. английским физиком Э. Резерфордом при исследовании движения альфа-частиц в газах и других веществах была обнаружена положительно заряженная часть атома. Дальнейшие более тщательные исследования показали, что при прохождении пучка параллельных лучей сквозь слои газа или тонкую металлическую пластинку выходят уже не параллельные лучи, а несколько расходящиеся: происходит рассеяние альфа-частиц, т. е. отклонение их от первоначального пути. Углы отклонения невелики, но всегда имеется небольшое число частиц (примерно одна из нескольких тысяч), которые отклоняются очень сильно. Некоторые частицы отбрасываются назад, как если бы на пути встретилась непроницаемая преграда. Это не электроны – их масса гораздо меньше массы альфа-частиц. Отклонение может происходить при столкновении с положительными частицами, масса которых того же порядка, что и масса альфа-частиц. Исходя из этих соображений, Резерфорд предложил следующую схему строения атома.
В центре атома находится положительно заряженное ядро, вокруг которого по разным орбитам вращаются электроны. Возникающая при их вращении центробежная сила уравновешивается притяжением между ядром и электронами, вследствие чего они остаются на определенных расстояниях от ядра. Поскольку масса электрона ничтожна мала, то почти вся масса атома сосредоточена в его ядре. На долю ядра и электронов, число которых сравнительно невелико, приходится лишь ничтожная часть всего пространства, занятого атомной системой.
Предложенная Резерфордом схема строения атома или, как обыкновенно говорят, планетарная модель атома , легко объясняет явления отклонения альфа-частиц. Действительно, размеры ядра и электронов чрезвычайно малы по сравнению с размерами всего атома, которые определяются орбитами наиболее удаленных от ядра электронов, поэтому большинство альфа-частиц пролетает через атомы без заметного отклонения. Только в тех случаях, когда альфа-частица очень близко подходит к ядру, электрическое отталкивание вызывает резкое отклонение ее от первоначального пути. Таким образом, изучение рассеяния альфа-частиц положило начало ядерной теории атома.

Постулаты Бора

Планетарная модель атома позволила объяснить результаты опытов по рассеянию альфа-частиц вещества, однако возникли принципиальные трудности при обосновании устойчивости атомов.
Первая попытка построить качественно новую – квантовую – теорию атома была предпринята в 1913 г. Нильсом Бором. Он поставил цель связать в единое целое эмпирические закономерности линейчатых спектров, ядерную модель атома Резерфорда и квантовый характер излучения и поглощения света. В основу своей теории Бор положил ядерную модель Резерфорда. Он предположил, что электроны движутся вокруг ядра по круговым орбитам. Движение по окружности даже с постоянной скоростью обладает ускорением. Такое ускоренное движение заряда эквивалентно переменному току, который создает в пространстве переменное электромагнитное поле. На создание этого поля расходуется энергия. Энергия поля может создаваться за счет энергии кулоновского взаимодействия электрона с ядром. В результате электрон должен двигаться по спирали и упасть на ядро. Однако опыт показывает, что атомы – очень устойчивые образования. Отсюда следует вывод, что результаты классической электродинамики, основанной на уравнениях Максвелла, неприменимы к внутриатомным процессам. Необходимо найти новые закономерности. В основу своей теории атома Бор положил следующие постулаты.
Первый постулат Бора (постулат стационарных состояний): в атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состояниям атома соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов по стационарным орбитам не сопровождается излучением электромагнитных волн.
Этот постулат находится в противоречии с классической теорией. В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные квантовые значения момента импульса.
Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией

равной разности энергий соответствующих стационарных состояний (Еn и Еm – соответственно энергии стационарных состояний атома до и после излучения/поглощения).
Переходу электрона со стационарной орбиты под номером m на стационарную орбиту под номером n соответствует переход атома из состояния с энергией Еm в состояние с энергией Еn (рис. 4.1).

Рис. 4.1. К пояснению постулатов Бора

При Еn > Еm происходит излучение фотона (переход атома из состояния с большей энергией в состояние с меньшей энергией, т. е. переход электрона с более удаленной от ядра орбиты на более близлежащую), при Еn < Еm – его поглощение (переход атома в состояние с большей энергией, т. е, переход электрона на более удаленную от ядра орбиту). Набор возможных дискретных частот

квантовых переходов и определяет линейчатый спектр атома.
Теория Бора блестяще объяснила экспериментально наблюдаемый линейчатый спектр водорода.
Успехи теории атома водорода были получены ценой отказа от фундаментальных положений классической механики, которая на протяжении более 200 лет остается безусловно справедливой. Поэтому большое значение имело прямое экспериментальное доказательство справедливости постулатов Бора, особенно первого – о существовании стационарных состояний. Второй постулат можно рассматривать как следствие закона сохранения энергии и гипотезы о существовании фотонов.
Немецкие физики Д. Франк и Г. Герц, изучая методом задерживающего потенциала столкновение электронов с атомами газов (1913г.), экспериментально подтвердили существование стационарных состояний и дискретность значений энергии атомов.
Несмотря на несомненный успех концепции Бора применительно к атому водорода, для которого оказалось возможным построить количественную теорию спектра, создать подобную теорию для следующего за водородом атома гелия на основе представлений Бора не удалось. Относительно атома гелия и более сложных атомов теория Бора позволила делать лишь качественные (хотя и очень важные) заключения. Представление об определенных орбитах, по которым движется электрон в атоме Бора, оказалось весьма условным. На самом деле движение электронов в атоме имеет мало общего с движением планет по орбитам.
В настоящее время с помощью квантовой механики можно ответить на многие вопросы, касающиеся строения и свойств атомов любых элементов.


Похожая информация.


Понятие «атом» (неделимый) было введено древнегреческими философами в 500–200 гг. до н.э. для описания устройства окружающего мира. До конца XIX века полагали, что атом – простейшая неделимая частица. Первые предположения о сложности строения атома появились при изучении радиоактивности, электрохимических процессв, катодных лучей и др. явлений. Позже было установлено, что радиоактивность представляют собой поток частиц: α – ядра He 2+ , β – электроны и γ – рентгеновское излучение.

12.1.1 Модель атома по Резерфорду

Э. Резерфорд в 1911–1913 гг. исследовал прохождение α-частиц через металлическую (золото) фольгу. Сущность эксперимента приведена на рисунке 12.1.

Рисунок 12.1 – Прохождение α-частиц через фольгу

Оказалось, что большая часть α-частиц (дважды ионизированный атом гелия Не +2) проходила через фольгу не отклонялась, а лишь малая часть изменяла направление и даже отбрасывалась в противоположном направлении. Исходя из этого был сделан вывод, что в очень малой части объема атома находится положительно заряженная частица с большой массой, сталкиваясь с которой α-частица изменяла свое направление движения.

На основании полученных экспериментальных данных Э. Резерфорд предложил модель атома, согласно которой атом состоит из положительно заряженного ядра, занимающего малый объем, в котором сосредоточена основная масса атома, и отрицательно заряженных легких частиц – электронов. Такая система может быть устойчива при условии вращения электронов вокруг ядра и при этом центробежная сила вращения электронов должна быть равна электростатическому притяжению электронов к ядру. Такую модель по аналогии с солнечной системой назвали планетарной.

Модель атома по Резерфорду, несмотря на недостатки, впервые дала верное представление об общем устройстве атома, но она не могла объяснить следующее:

1) устойчивости системы ядро – электрон. При движении вокруг ядра электрон должен непрерывно излучать энергию, что будет приводить к уменьшению радиуса орбиты электрона и в конечном итоге электрон должен упасть на ядро. На самом деле в отсутствие внешнего воздействия атом не излучает энергию;

2) линейчатой природы спектра атомов. Согласно предложенной модели радиус орбиты электрона должен непрерывно уменьшаться, что должно приводить к сплошному спектру. Но изучение спектров атомов показало, что они имеют линейчатую природу. Этот факт указывает на то, что электроны излучают и поглощают энергию не непрерывно, а отдельными порциями («квантами»).

Устранить эти противоречия смог датский физик Нильс Бор.

Модель атома по Бору

В 1900 году Макс Планк показал, что энергия электромагнитного излучения видимой части спектра квантуется, т.е. свет излучается и поглощается не непрерывно, а отдельными порциями – кван­тами. Энергия квантов (Е)связана с частотой излучения (υ) следующей форму­лой:

где h – постоянная Планка.

Основываясь на квантовой теории излу­чения, Нильс Бор сделал вывод о том, что электрон в атоме может принимать не любые, а строго определённые значения энергии. Переход электрона из одного энергетического уровня на другой сопровождается испуска­нием или поглощением определенного кванта электромагнитного излучения.

На основе квантовой теории излучения и планетарной модели атома по Резерфорду Бор предложил модель атома, которая базировалась на следующих постулатах:

1) электрон в атоме может вращаться вокруг ядра не по любым, а только по строго определённым орбитам, которые называются стационарными;

2) двигаясь по стационарным орбитам, электрон не излучает энергию;

3) при переходе с более низкой на более высокую орбиту электрон поглощает энергию, равную разности энергий между соответствующими орбитами. Такое состояние электрона называется возбужденным. В этом состоянии он пребывает примерно 10 –8 секунды и после излучения избыточной энергии переходит обратно на стационарную орбиту.

Информацию о состоянии электронов в атоме дают спектры электронных переходов, которые в зависимости от метода исследования делятся на спектры поглощения и испускания (эмиссионный спектр). Образно говоря можно сказать, что спектр – это зеркало электронных состояний. Предложенный Бором математический аппарат позволил рассчитать спектр только атома водорода и водородоподобных атомов.

Основные недостатки модели атома по Бору:

1) модель была неприменима для описания спектров атомов более сложных, чем водород;

2) модель не могла объяснить различной интенсивности спектральных линий в спектре даже атома водорода.

12.2 Современные представления о строении атома

В 1924 г. Луи де Бройль предположил, что волновыми свойствами должны обладать любые движущиеся материальные частицы, в том числе и электроны.

Объединив уравнения М.Планка (E = h·ν) и А.Эйнштейна (E = mc 2), он вывел уравнение для расчета длины волны излучения любой движущейся частицы

где h – постоянная Планка,

m – масса частицы, V – скорость ее движения.

К 1927 г. были экспериментально (дифракция и интерференция электронов) подтверждены волновые свойства электрона. То есть для описания состояния электрона в атоме необходимо учитывать его волновые свойства. Поэтому можно говорить о вероятности нахождения электрона в определенной области пространства. С учетом этого термин «орбита» был заменен не термин «орбиталь».

Орбиталь граничная поверхность внутри которой вероятность нахождения электрона составляет 90 %.

В 1925 г. австрийский физик Шредингер предложил для описания состояние электрона в атоме применять математическое уравнение (уравнение Шредингера), учитывающее волновые свойства электрона. Данное уравнение применимо для описания электронной структуры в атоме любого элемента. Решение данного уравнения показывает, что состояние электрона в атоме можно описать посредством четырёх квантовых чисел: главного, орбитального, магнитного и спинового.

Главное квантовое число (n) характеризует радиус и энергию электрона на энергетическом уровне . Оно может принимать целочисленные значе­ния: 1, 2, 3, 4 и т.д. Чем больше n, тем больше радиус и энергия электрона.

Орбитальное квантовое число (l ) характеризует энергию электрона на подуровне и форму электронного облака. Оно принимает целочисленные значения от 0 до (n – 1). Например, если главное квантовое число n = 4, то орбитальное квантовое число может принимать значения: 0; 1; 2; 3. Эти значения имеют буквенные обозначения соответственно: s-, р-, d- и f-электронные облака.

Магнитное квантовое число (m ) показывает число орбиталей на подуровне и принимает целочисленные значения от –l до +l (всего 2l + 1 значений) . На s-, р-, d- и f-подуровнях соответственно находятся 1, 3, 5 и 7 орбиталей.

Спиновое квантовое число (m s) характеризует собственное движение электрона и может принимать два значения: +1/2 и –1/2, то есть на одной орбитали может находиться два электрона.

Принципы заполнения электронных оболочек атомов:

принцип энергетического минимума – заполнение орбиталей происходит в порядке увеличения энергии;

принцип Паули – в атоме не может быть двух электронов, у которых все четыре квантовых числа были бы одинаковы;

правило Хунда – спин в пределах подуровня должен быть максимален.

В таблице 12.1 приведены значения всех четырех квантовых чисел и максимальные количества орбиталей и электронов на энергетических уровнях и подуровнях.

Таблица 12.1 – Значения n, l, m, количества орбиталей на подуровнях

(2l + 1), электронов на подуровнях (N l) и уровнях (N n)

n l m 2l + 1 N l = 2(2l+1) N n = 2n 2
0 (s)
0 (s)
1 (p) 1,0,+1
0 (s)
1 (p) 1,0,+1
2 (d) 3,2,1,0,+1,+2
0 (s)
1 (p) 1, 0, +1
2 (d) 2, 1, 0, +1, +2
3 (f) 3,2,1,0,+1,+2,+3

Для описания состояния электронов в атоме применяются: электронная формула, энергетическая диаграмма, геометрическая модель.

Электронная формула показывает распределение электронов по

энергетическим уровням и подуровням. Например:

Для кислорода (О) элемента с порядковым номером 8 – 1s 2 2s 2 2p 4 ,

Для хрома (Cr) элемента с порядковым номером 24 – 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4s 2 , с учетом проскока электрона электронная формула имеет вид 1s 2 2s 2 2p 6 3s 2 3p 6 3d 5 4s 1 . Проскок электронов объясняется тем, что наполовину или полностью заполненные подуровни (р 3 , р 6 , d 5 , d 10 , f 7 , f 14) характеризуются повышенной устойчивостью.

Энергетическая диаграмма графически показывает распределение электронов по энергетическим ячейкам (орбиталям). Стрелка условно обозначает электрон и его спин. На рисунке12.2 показана энергетическая диаграмма атома кислорода.

Рисунок 12.2 – Энергетическая диаграмма атома кислорода

Геометрическая модель показывает формы орбиталей и их расположение в пространстве. На рисунке12.3 показана геометрическая модель атома кислорода.

Рисунок 12.3 – Геометрическая модель атома кислорода

Электронную формулу элемента можно записать на основании его положения в периодической таблице, так как периодичность изменения свойств элементов в таблице являются следствием периодичности заполнения электронами энергетических уровней и подуровней атомов.

Периодический закон и периодическая таблица Д.И. Менделеева

Д.И. Менделеев, сравнивая изменение атомных масс элементов и их химических свойств, открыл периодический закон:

«Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов».

В соответствии с современными представлениями о строении атомов главной характеристикой любого элемента является заряд его ядра, поэтому современная формулировка периодического закона имеет вид:

«Свойства элементов, а также свойства и форма образуемых ими соединений находятся в периодической зависимости от зарядов ядер их атомов».

Отражением периодического закона является периодическая таблица элементов, которую Д.И.Менделеев составил в 1869 г. Она включает периоды и группы.

Период горизонтальный ряд элементов. В периодической таблице семь периодов. f-элементы (лантаноиды и актиноиды) приведены в виде двух отдельных рядов. В периодах радиусы атомов уменьшаются.

Группа вертикальный ряд элементов . Группы делятся на главную и побочную подгруппы. У элементов главных подгрупп происходит заполнение внешнего энергетического уровня, а у побочных – предвнешнего. В главных подгруппах расположены металлы и неметаллы, а в побочных – только металлы. Заполнение побочных подгрупп начинается с четвертого периода. В главных подгруппах радиусы атомов увеличиваются. В побочных подгруппах в соответствии с заполнением d- и f-подуровней происходит увеличение электростатического притяжения электронов к ядру, в результате чего радиусы атомов могут даже уменьшаться. Данное явление называют d- и f (лантаноидным)-сжатием. Оно приводит к снижению восстановительной активности и увеличению плотности вещества. Например, для подгруппы меди (Сu, Аg и Аu) плотности данных металлов имеют соответственно значения: 8,96, 10,50 и 19,3 г∕см 3 .

Элементы, расположенные в одной подгруппе, имеют подобные химические свойства и называются элементами-аналогами. Например:

O, S, Se, Te, Po – расположены в VI главной подгруппе и соответственно являются элементами аналогами;

Cr, Мо, W – расположены в VI побочной подгруппе и также являются элементами аналогами.

Для характеристики химических свойств атомов применяются такие величины, как энергия ионизации, энергия сродства к электрону и электроотрицательность.

Энергия ионизации это количество энергии, необходимое для отрыва электрона от невозбужденного атома или иона. Вторая и последующие энергии ионизации – это отрыв электронов от положительно заряженных ионов. Энергия ионизации определяет восстановительные свойства элементов.

Энергия сродства к электрону это количество энергии, выделяющееся или поглощающееся при присоединении электрона к нейтральному атому. Чем больше энергия сродства атома к электрону, тем более сильным окислителем является данный элемент. Металлы не обладают сродством к электрону.

Электроотрицательность (ЭО) – это величина учитывающая

способность атомов как притягивать, так и отдавать электроны. Относительную электроотрицательность лития условно приняли равной единице и по отношению к ней нашли электроотрицательности остальных элементов. При движении от наименее электоотрицательного элемента – Fr к наиболее электроотрицательному элементу – F электроотрицательность возрастает и соответственно ослабляются металлические и усиливаются неметаллические свойства. Считается, что 22 элемента являются неметаллами, а остальные – металлами.

В периодической таблице в периодах и группах свойства элементов закономерно изменяются, поэтому свойства любого элемента близки к среднеарифметическим значениям свойств элементов, между которыми расположен анализируемый элемент.

В создании современной теории строения атома особую роль сыграли Эрнест Резерфорд и Нильс Бор. В 1911 году Резерфорд проводя опыты по бомбардировке α-частицами металлической фольги, выяснил, что внутри атомов расположены тяжёлые частицы, впоследствии названые ядрами, он же предложил планетарную модель строения атома. А в 1913 году Бор выдвинул первую квантовую теорию атома.

Итак, атом – это сложная микросистема, состоящая из элементарных частиц. Он состоит из положительно заряженного ядра и отрицательно заряженных электронов. Носителем положительного заряда ядра является протон. В ядра атомов всех элементов, кроме лёгкого изотопа водорода, входят протоны и нейтроны.

Ядро – фундаментальная основа атома, определяет индивидуальность элементов, состоит из нуклонов.

Величина радиусов атомов 0,05 – 0,30 нм. Масса электрона гораздо меньше, чем масса нуклонов, поэтому масса атома приблизительно равна массе ядра.

Свойства ядра определяются в основном его составом. Число протонов – заряд ядра, характеризует принадлежность атома данному химическому элементу. Другой важной характеристикой ядра является массовое число А:

А = Z + N, где N – общее число нейтронов; Z – общее число протонов.

Атомы с различным числом протонов и нейтронов, но с одинаковым А называются изобарами.

Атомы с одинаковым числом протонов, и следовательно одинаковым зарядом ядра, называются изотопами .

Атомы с одинаковым числом нейтронов называются изотонами.

На основании определения изотопов, можно дать более современное определение химического элемента. Химический элемент – это вид атомов, характеризующихся определённым зарядом ядра.

В химии атомное ядро принято считать точкой, которая обладает положительным зарядом + Z и массой, выражаемой массовым числом А. Однако ядро – это частица, которая имеет собственную структуру. Согласно современной теории атомное ядро имеет оболочечное строение. Протоны и нейтроны независимо друг от друга занимают ядерные слои и подслои, подобно тому, как это наблюдается для электронов в электронной оболочке атома.

Сопоставление показывает, что масса ядра всегда меньше арифметической суммы масс протонов и нейтронов, входящих в его состав. Разность между этими величинами называется дефектом массы. Дефект массы соответствует энергии, которая выделяется при образовании ядра из свободных протонов и нейтронов, и может быть вычислен из соотношения Эйнштейна E = mc 2 . Это энергия связи нуклонов в ядре, она в миллионы раз превышает энергию связи атомов в молекуле. Поэтому при химических превращениях веществ атомные ядра не изменяются.

Следует отметить, что природа ядерных сил окончательно не выяснена, они действуют на очень малых расстояниях (порядка 10 -15 метра) и связывают отдельные протоны и нейтроны, образуя большие ядра. В настоящее время известно порядка 300 устойчивых и свыше 1400 радиоактивных ядер.

Как мы уже выяснили, ядра атомов при химических реакциях не затрагиваются, следовательно химические свойства элементов в основном зависят от количества и расположения электронов в их атомах.

Электрон – это отрицательно заряженная исключительно лёгкая частица, которая была открыта в 1897 году в ходе опытов с катодными лучами.

В 1913 году Нильс Бор разработал модель атома. Его теория строения атома основывалась на двух положениях, которые называют постулатами Бора.

Первый постулат : электроны движутся вокруг ядра атома по круговым орбитам . Чем ближе орбита электрона расположена к ядру, тем меньше запас энергии атома, так как с уменьшением расстояния между двумя электрическими зарядами различных знаков их общая энергия убывает.

Бор предположил, что в атоме электроны могут двигаться только по определённым орбитам (имеется в виду расстояние от ядра), которые называются разрешёнными . Каждой из орбит электрона соответствует определённая энергия атома. С орбиты на орбиту электрон может переходить только скачками. Энергия атома при этом также изменяется скачкообразно, говорят, что энергия квантуется.

Второй постулат утверждает, что момент количества движения (импульс mv) электрона по орбите носит квантовый характер и равен целому числу, кратному величине h/2π (h – постоянная Планка, h = 6,63 ∙ 10 -34 Дж∙ с).

К началу XIX века окончательно утвердилось понятие, что атом представляет наименьшую частицу вещества, являющуюся носителем его свойств. Именно на анализе изменения свойств атомов был основан целый ряд таблиц элементов, а в 1869 г. Дмитрием Ивановичем Менделеевым сформулирован Периодический закон.

Начиная с середины XIX века, росло число экспериментальных фактов, свидетельствовавших прямо или косвенно о сложном характере строения атома.

Уильям Крукс (Crookes ) и позднее Джозеф Томсон (Thomson ) обнаружили катодные лучи – поток электронов, возникающий между двумя электродами в вакууме при приложении к ним разности потенциалов.

Анри Беккерель (Becquerel ) открыл явление естественной радиоактивности солей урана (a-, b- и g-излучение). Впоследствии было показано, что a-частицы это положительно заряженные ядра атомов гелия, b-частицы – поток электронов, аналогичный катодным лучам Крукса, g-излучение − поток квантов электромагнитного излучения, аналогичный X-лучам Рентгена.

Спектры излучения не взаимодействующих друг с другом свободных атомов представляют собой серии линий (узких полос) с определенными длинами волн (или соответственно частот), характерными для каждого атома. Для атомов водорода спектр излучения наиболее прост и состоит из ряда серий (исторически получивших имена Лаймана, Бальмера и др.) в видимой, УФ- и ИК-областях спектра. Была обнаружена эмпирическая формула зависимости, связывающей частоты излучения линий между собой:

где =1/l волновое число (характеристика, обычно используемая в спектроскопии); n i = 1,2,3 ,... (целые числа); R = 109677,58 см -1 – постоянная величина (постоянная Ридберга). Линейчатый характер спектров указывает на дискретный характер изменения энергии электронов в атоме.



Эрнест Резерфорд (Rutherford ) экспериментально установил, что атом состоит из малого по размеру положительно заряженного ядра, содержащего практически всю массу атома и расположенных вокруг него электронов, и предложил так называемую планетарную модель атома .

Работы Генри Мозли (Moseley ) по изучению характеристических рентгеновских спектров различных элементов позволили доказать, что порядковый номер элемента в Периодической системе совпадает с зарядом ядра атома.

Таким образом, атом представляет собой сложную систему, состоящую из полжительно заряженного ядра движущихся вокруг него электронов. Заряд ядра атома (выраженный в единицах элементарного электрического заряда) соответствует порядковому номеру элемента в Периодической таблице и равен числу электронов.

Теория строения атома Бора

Первой моделью атома, в которой были использованы идеи квантования энергии, стала теория Нильса Бора (Bohr ), разработанная на базе модели Резерфорда.

Основным недостатком планетарной модели строения атома Резерфорда было ее противоречие теории классической электродинамики, которая утверждает, что, двигаясь по круговой орбите, электрон как заряженная частица должен непрерывно излучать энергию и "достаточно быстро упасть на ядро". Нильс Бор пришел к выводу, что микрочастицы отличаются по свойствам от макрообъектов, поэтому классической электродинамики недостаточно для их описания. В своей теории Бор использовал представления классической механики о движении заряженной частицы в электрическом поле, дополнив их идеями квантования энергии. При этом он выдвинул три постулата (постулат – утверждение в теории, принимаемое за истинное, хотя и недоказуемое в рамках этой теории).

Первый постулат . Электроны в атоме могут двигаться только по некоторым определенным устойчивым стационарным круговым орбитам. При движении по этим орбитам электроны не излучают энергию, то есть существует ряд стационарных состояний атома, соответствующих определенным значениям его энергии.

Второй постулат. При переходе электрон с одной стационарной орбиты на другую атом испускает или поглощает квант электромагнитного излучения, энергия которого (h n) равна разности энергий стационарных состояний:

h n=E 1 –E 2 ,

где h – постоянна планка, n – частота излучения.

Третий постулат. В атоме существуют только такие электронные орбиты, находясь на которых электрон обладает моментом количества движения, кратным (часто вводят обозначение ):

M = m×v×r = ,

где M – момент количества движения электрона; m = 9,11×10 -31 кг – масса электрона; v – скорость электрона; r – радиус орбиты электрона; h = 6,63 ×10 -34 Дж×с – постоянная Планка; n = 1,2,3 ... – целое число, получившее название «квантовое число ».

Используя эти постулаты, Бор рассчитал размеры стационарных орбит электронов в атоме, энергию электронов на стационарных орбитах и выразил постоянную Ридберга через основные константы.

Так, в этой модели атом водорода представляет собой положительно заряженное ядро, вокруг которого по круговой орбите движется электрон. Используя представления классической механики о движении частицы по круговой орбите и постулаты Бора можно определить энергию электрона и радиус его орбиты.

Радиусы электронных орбит: – сила кулоновского притяжения; k = 1/4pe 0 , e 0 = 8.85×10 -12 Кл/Н×м 2 – электрическая постоянная; е = 1.6×10 -19 Кл – единичный электрический заряд (заряд ядра и электрона) – центробежная сила; ; – постулат Бора; – радиусы орбит электрона; n = 1,2,3... – квантовое число.

Радиус первой (n =1) стационарной орбиты электрона для атома водорода составляет величину:

r 1 = h 2 /4p 2 e 2 mk = 5,29×10 -11 м 0,53 Å

и называется «радиус первой боровской орбиты» (1Å = 10 -10 м).

Энергия электрона : – полная энергия электрона; – потенциальная энергия электрона; – кинетическая энергия электрона; – полная энергия электрона; – радиус орбит электронов; .

Электрон, находящийся на первой стационарной орбите (n =1) атома водорода, будет обладать энергией

= –2,17×10 -18 Дж = – 13,6 эВ; (1эВ=1,602×10 -19 Дж).

Отрицательное значение энергии свидетельствует о том, что электрон связан с ядром. Для перевода электрона на бесконечное расстояние от ядра (удаление из атома) необходимо затратить энергию, называемую энергией ионизации (E и). Численное значение энергии электрона в основном состоянии атома водорода (E 1) совпадает с экспериментально определенной величиной E и.

Набор стационарных орбит электрона может быть представлен в виде набора энергетических состояний (уровней) – рис. 2.1. При переходе электрона с более удаленной стационарной орбиты на менее удаленную энергия выделяется в виде квантов электромагнитного излучения. При поглощении энергии электрон переходит на более удаленные орбиты.

Рис. 2‑1 Диаграмма энергетических состояний электрона в атоме водорода: n – главное квантовое число; Е i – энергия электрона на i орбите; h n ij = E i - E j – квант электромагнитного излучения

Квантовое число n определяет энергию электрона и радиус орбит, по которым двигается электрон, обладающий соответствующей энергией.

Теория Бора сыграла положительную роль, открыв дорогу квантовой механике. Основное ее достоинство заключалось в количественном описании линейчатых спектров простейших атомов. С усовершенствованием приборов и техники спектроскопии обнаружили, что линии, принимавшиеся за единичные, в действительности состоят из нескольких близко расположенных друг к другу линий. Следовательно, для каждого квантового числа существует несколько близких друг к другу энергетических уровней. До некоторой степени это объяснил Арнольд Зоммерфельд (Sommerfeld ), который допустил существование в атоме эллиптических орбит. Было введено еще два дополнительных квантовых числа: побочное и магнитное, существование которых непосредственно не вытекало из теории Бора. Однако в целом необходимо констатировать, что в рамках классической физики не удалось создать "хорошую" модель описания поведения микрочастиц. Основным недостатком теории Бора для химии явилась невозможность дать даже качественное и тем более количественное описание химической связи.

Понятие «атом» было известно ещё в древности и использовалось для описания представлений об устройстве окружающего мира древнегреческими философами, так Левкипп (500-200 гг. до н.э.) утверждал, что мир состоит из мельчайших частиц и пустоты, а Демокрит назвал эти частицы атомами и считал, что они существуют вечно и способны двигаться. По представлениям древних философов атомы были настолько малы, что не могли быть измерены, а форма и внешнее различие придают свойства определенным телам. Например, атомы железа должны обладать «зубцами», чтобы зацепляться друг за друга и образовывать твердое тело, атомы же воды, напротив, должны быть гладкими и перекатываться, чтобы обеспечивать воде текучесть. Первое предположение о способности атомов самостоятельно взаимодействовать друг с другом было сделано Эпикуром.

Создателем атомно-молекулярного учения считают М.В. Ломоносова, он различал в строении вещества две ступени: элементы (атомы, в нашем понимании) и корпускулы (молекулы). Ломоносов утверждал, что простые вещества состоят из атомов одного вида, а сложные – из различных атомов.

Всемирное признание атомно-молекулярная теория получила благодаря Дж. Дальтону, который, в отличии от древнегреческих философов при формулировании своих утверждений опирался только на экспериментальные данные. Дж. Дальтон ввел одну из важнейших характеристик атома – атомную массу, относительные значения которой были установлены для ряда элементов. Но, несмотря сделанные им открытия атом считали неделимым.

После получения экспериментальных доказательств (конец XIX начало XX века) сложности строения атома: открытие фотоэффекта (испускание носителей электрического заряда с поверхности металлов при их освещении), катодных (поток отрицательно заряженных частиц – электронов, в трубке, в которой имеется катод и анод) и рентгеновских лучей (испускание веществами сильного электромагнитного излучения, подобного видимому свету, но более высокочастотного, при действии на эти вещества катодных лучей), радиоактивности (самопроизвольное превращение одного элемента в другой, при котором происходит испускание электронов, положительно заряженных и других частиц, а также рентгеновского излучения) было установлено, что атом состоит из отрицательно и положительно заряженных частиц, которые взаимодействуют между собой. Эти открытия дали толчок к созданию первых моделей строения атома.

Одна из первых моделей атома была разработана У. Томсоном (1902) По мнению У. Томсона атом – сгусток положительно заряженной материи, внутри – равномерно распределены электроны, а атом водорода представляет собой положительно заряженный шар, внутри которого электрон (рис. 1а). Эту модель была доработана Дж. Томсоном (1904) (рис.1б). В том же году японский физик Х. Нагаока предложил «сатурнианскую модель» строения атома, предполагая, что атом подобен планете Сатурну – в центре ядро, окруженное кольцами, по которым движутся электроны (рис.1в).

Ещё одну модель предложил немецкий физик Филипп фон Ленард, согласно которой атом состоит из нейтральных частиц крайне малых размеров (вследствие чего, большая часть атома – пустота), каждая из которых – электрический дуплет (рис. 1г).

Рис. 1. Модели строения атома: а – У. Томсона; б – Дж.Томсона; в – Х. Нагаока; г – Ф.Ленарда

После опытов с -частицами, в 1911г. Резерфорд предложил так называемую планетарную модель строения атома, похожую на строение солнечной системы (маленькое положительно заряженное ядро в центре атома, в котором заключена почти вся масса атома, вокруг которого по орбитам движутся электроны). Планетарная модель подверглась дальнейшему развитию в работах Н. Бора, А. Зоммерфельда и др.

Современная модель строения атома основана на знаниях квантовой механики, главный тезис которой – микрочастицы имеют волновую природу, а волны — свойства частиц. Квантовая механика рассматривает вероятность нахождения электрона вокруг ядра. Пространство вокруг ядра, в котором наиболее вероятно нахождение электрона, называется орбиталью.

Изотопы

Изотопы – атомы, обладающие одинаковым зарядом ядра, но разной массой. Такие атомы обладают практически одинаковым строением электронной оболочки и принадлежат одному элементу. Исследование природных соединений разных элементов показывает существование устойчивых изотопов у большинства элементов периодической системы. Для всех элементов периодической системы число изотопов, встречающихся в природе, достигает 280.

Самым ярким примером изотопии можно назвать изотопы водорода –водород, дейтерий и тритий. В природе встречаются водород и дейтерий. Тритий получается искусственно.

Неустойчивые изотопы, т.е., обладающие способностью самопроизвольно распадаться называют радиоактивными изотопами. Они также могут встречаться в природных соединениях некоторых элементов.

Состав ядра атома. Ядерные реакции

В ядре атома содержится множество элементарных частиц, самые важные из которых – протон (p) и нейтрон (n). Масса протона 1,0073 а.е.м., заряд +1, в то время как нейтрон электронейтрален (заряд 0) и обладает массой 1,0087 а.е.м.

Согласно протонно-нейтронной теории строения ядра (Д.Д. Иваненко, Е.Н. Гапон, 1932) ядра всех атомов, исключая водород, состоят из Z протонов и (А-Z) нейтронов (Z – порядковый номер элемента, А – массовое число). Число электронов равно числу протонов.

где N – число нейтронов.

Свойства ядра определяются его составом (чиcлом p и n). Так, например, в атоме кислорода 16 8 О 8 протонов и 16-8=8 нейтронов, что кратко записывается 8p, 8n.

Внутри ядер p и n могут превращаться (при определенных условиях) друг в друга:

где e + — позитрон (элементарная частица с массой, равной массе электрона т зарядом +1), а и — нейтрино и антинейтрино, элементарные частицы с массой и зарядом равными нулю, отличающимися только спином.

Ядерные реакции – превращения атомных ядер, в результате их взаимодействия с элементарными частицами или друг с другом. При написании уравнений ядерных реакций необходимо учитывать законы сохранения массы и заряда. Например: 27 13 Al + 4 2 He = 30 14 Si + 1 1 H.

Особенность ядерных реакций – выделение огромного количества энергии в форме кинетической энергии образующихся частиц или излучения.

Задания:

1. Определите число протонов, нейтронов и электронов в атомах S, Se, Al, Ru.

2. Закончите ядерные реакции: 14 7 N + 4 2 He = ; 12 6 C + 1 0 n =.

Ответы:

1. S: Z= 16, А = 32, следовательно 16p, 16e, 32-16=16n

Se: Z= 34, А = 79, следовательно 34p, 34e, 79-34=45n

Al: Z= 13, А = 27, следовательно 13p, 13e, 27-13=14n

Ru: Z= 44, А = 101, следовательно 44p, 44e, 101-44=57n

2. 14 7 N + 4 2 He = 17 8 О + 1 1 Н

12 6 C + 1 0 n = 9 4 Be + 4 2 He